generated from maddiebusig/vivado-template-hog
Compare commits
53 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
| 1f1fe1dff0 | |||
| 8a7ed7a61b | |||
| 631f46f339 | |||
| 8ffe9271f2 | |||
| 26eb01a9e8 | |||
| 6b441b12ae | |||
| 31730fba46 | |||
| 067e4c1f6a | |||
| 941cbdf2dc | |||
| 1c532bdd95 | |||
| 616166f69f | |||
| d85f2cf5d8 | |||
| ee6c3d2e60 | |||
| ca29b6c586 | |||
| 72b06dbcb4 | |||
| e683fa28c8 | |||
| ae5dcf1a4d | |||
| 5094eba511 | |||
| 904b083688 | |||
| b33383ce5f | |||
| 9f17c3f16f | |||
| a58148a92e | |||
| a2c0c9a972 | |||
| 89fc1846d5 | |||
| 67bcca2aca | |||
| b32ab40b0f | |||
| 64f63e41b7 | |||
| 002d2c0c06 | |||
| a352ed794c | |||
| 2695b69b21 | |||
| 6418f366b3 | |||
| 7c2de42e2c | |||
| 9d02715cb9 | |||
| 5421c7ccc9 | |||
| 53aee5878e | |||
| cff5b413e7 | |||
| ca6826d53d | |||
| cf43ac49d3 | |||
| 49723910d8 | |||
| e42d640083 | |||
| 51f3102fae | |||
| 68c9947d1a | |||
| 712206a524 | |||
| 913af7a46a | |||
| 600eebbd11 | |||
| a6e86c8f3c | |||
| c2e6cec4e7 | |||
| 46c000b94a | |||
| bdc55177cd | |||
| c242ff9445 | |||
| 8524f3908f | |||
| ee3c5dca87 | |||
| 50853a7762 |
4
.gitignore
vendored
4
.gitignore
vendored
@ -21,8 +21,8 @@
|
||||
IP/*/*
|
||||
!IP/*/*.xci*
|
||||
|
||||
BD/*
|
||||
!BD/*.bd
|
||||
BD/*/*
|
||||
!BD/*/*.bd
|
||||
|
||||
## OS
|
||||
.DS_Store
|
||||
|
||||
1303
BD/pwm_controller/pwm_controller.bd
Normal file
1303
BD/pwm_controller/pwm_controller.bd
Normal file
File diff suppressed because it is too large
Load Diff
6
Top/hw_pwm_controller/hog.conf
Normal file
6
Top/hw_pwm_controller/hog.conf
Normal file
@ -0,0 +1,6 @@
|
||||
#vivado 2022.1
|
||||
|
||||
[main]
|
||||
PART = xc7z007sclg400-1
|
||||
IP_REPO_PATHS = "IP/ UserIP/"
|
||||
|
||||
2
Top/hw_pwm_controller/list/hw_pwm_controller.con
Normal file
2
Top/hw_pwm_controller/list/hw_pwm_controller.con
Normal file
@ -0,0 +1,2 @@
|
||||
pwm_controller/con/blackboard.xdc
|
||||
|
||||
1
Top/hw_pwm_controller/list/hw_pwm_controller.sim
Normal file
1
Top/hw_pwm_controller/list/hw_pwm_controller.sim
Normal file
@ -0,0 +1 @@
|
||||
|
||||
4
Top/hw_pwm_controller/list/hw_pwm_controller.src
Normal file
4
Top/hw_pwm_controller/list/hw_pwm_controller.src
Normal file
@ -0,0 +1,4 @@
|
||||
hw_pwm_controller/src/top.v top=top
|
||||
pwm_block/src/pwm_core.v
|
||||
pwm_block/src/clk_enable_pulser.v
|
||||
|
||||
5
Top/led_controller/hog.conf
Normal file
5
Top/led_controller/hog.conf
Normal file
@ -0,0 +1,5 @@
|
||||
#vivado 2022.1
|
||||
|
||||
[main]
|
||||
PART = xc7z007sclg400-1
|
||||
|
||||
31
Top/led_controller/ip.conf
Normal file
31
Top/led_controller/ip.conf
Normal file
@ -0,0 +1,31 @@
|
||||
[main]
|
||||
ROOT=UserIP/led_controller
|
||||
VENDOR=user.org
|
||||
LIBRARY=user
|
||||
# What folder the IP shows up under in Vivado IPI
|
||||
TAXONOMY=/UserIP
|
||||
|
||||
[interface.s_axi]
|
||||
INTERFACE=xilinx.com:interface:aximm_rtl:1.0
|
||||
INFER=true
|
||||
PORTS=s_axi_awaddr s_axi_awprot s_axi_awvalid s_axi_awready s_axi_wdata s_axi_wstrb s_axi_wvalid s_axi_wready s_axi_bresp s_axi_bvalid s_axi_bready s_axi_araddr s_axi_arprot s_axi_arvalid s_axi_arready s_axi_rdata s_axi_rresp s_axi_rvalid s_axi_rready
|
||||
|
||||
[interface.s_axi_aclk]
|
||||
INTERFACE=xilinx.com:signal:clock_rtl:1.0
|
||||
ENABLEMENT_DEPENDENCY
|
||||
INFER=false
|
||||
MODE=slave
|
||||
PORT.CLK=s_axi_aclk
|
||||
PARAMETER.ASSOCIATED_RESET=s_axi_aresetn
|
||||
PARAMETER.ASSOCIATED_BUSIF=s_axi
|
||||
|
||||
[interface.s_axi_aresetn]
|
||||
INTERFACE=xilinx.com:signal:reset_rtl:1.0
|
||||
INFER=true
|
||||
PORTS=s_axi_aresetn
|
||||
|
||||
[memmap.s_axi]
|
||||
BLOCKS=reg_base
|
||||
BLOCK.reg_base.BASE_ADDRESS=0
|
||||
BLOCK.reg_base.RANGE=32
|
||||
|
||||
3
Top/led_controller/list/led_controller.src
Normal file
3
Top/led_controller/list/led_controller.src
Normal file
@ -0,0 +1,3 @@
|
||||
led_controller/src/blackboard_led_controller_v1_0.v
|
||||
led_controller/src/blackboard_led_controller_v1_0_S_AXI.v
|
||||
|
||||
5
Top/pwm_block/hog.conf
Normal file
5
Top/pwm_block/hog.conf
Normal file
@ -0,0 +1,5 @@
|
||||
#vivado 2022.1
|
||||
|
||||
[main]
|
||||
PART = xc7z007sclg400-1
|
||||
|
||||
31
Top/pwm_block/ip.conf
Normal file
31
Top/pwm_block/ip.conf
Normal file
@ -0,0 +1,31 @@
|
||||
[main]
|
||||
ROOT=UserIP/rgb_pwm_block
|
||||
VENDOR=user.org
|
||||
LIBRARY=user
|
||||
# What folder the IP shows up under in Vivado IPI
|
||||
TAXONOMY=/UserIP
|
||||
|
||||
[interface.s_axi]
|
||||
INTERFACE=xilinx.com:interface:aximm_rtl:1.0
|
||||
INFER=true
|
||||
PORTS=s_axi_awaddr s_axi_awprot s_axi_awvalid s_axi_awready s_axi_wdata s_axi_wstrb s_axi_wvalid s_axi_wready s_axi_bresp s_axi_bvalid s_axi_bready s_axi_araddr s_axi_arprot s_axi_arvalid s_axi_arready s_axi_rdata s_axi_rresp s_axi_rvalid s_axi_rready
|
||||
|
||||
[interface.s_axi_aclk]
|
||||
INTERFACE=xilinx.com:signal:clock_rtl:1.0
|
||||
ENABLEMENT_DEPENDENCY
|
||||
INFER=false
|
||||
MODE=slave
|
||||
PORT.CLK=s_axi_aclk
|
||||
PARAMETER.ASSOCIATED_RESET=s_axi_aresetn
|
||||
PARAMETER.ASSOCIATED_BUSIF=s_axi
|
||||
|
||||
[interface.s_axi_aresetn]
|
||||
INTERFACE=xilinx.com:signal:reset_rtl:1.0
|
||||
INFER=true
|
||||
PORTS=s_axi_aresetn
|
||||
|
||||
[memmap.s_axi]
|
||||
BLOCKS=reg_base
|
||||
BLOCK.reg_base.BASE_ADDRESS=0
|
||||
BLOCK.reg_base.RANGE=32
|
||||
|
||||
12
Top/pwm_block/list/clk_enable_pulser_tb.sim
Normal file
12
Top/pwm_block/list/clk_enable_pulser_tb.sim
Normal file
@ -0,0 +1,12 @@
|
||||
# Simulator xsim
|
||||
|
||||
[generics]
|
||||
VCD_DUMPFILE=clk_enable_pulser_tb.vcd
|
||||
|
||||
[properties]
|
||||
ACTIVE=1
|
||||
TOP=clk_enable_pulser_tb
|
||||
|
||||
[files]
|
||||
pwm_block/src/clk_enable_pulser.v
|
||||
pwm_block/sim/clk_enable_pulser_tb.v
|
||||
2
Top/pwm_block/list/pwm_block.con
Normal file
2
Top/pwm_block/list/pwm_block.con
Normal file
@ -0,0 +1,2 @@
|
||||
pwm_block/con/pwm_block.xdc
|
||||
|
||||
1
Top/pwm_block/list/pwm_block.sim
Normal file
1
Top/pwm_block/list/pwm_block.sim
Normal file
@ -0,0 +1 @@
|
||||
|
||||
5
Top/pwm_block/list/pwm_block.src
Normal file
5
Top/pwm_block/list/pwm_block.src
Normal file
@ -0,0 +1,5 @@
|
||||
pwm_block/src/rgb_pwm_block.v top=rgb_pwm_block
|
||||
pwm_block/src/rgb_pwm_block_S_AXI.v
|
||||
pwm_block/src/pwm_core.v
|
||||
pwm_block/src/clk_enable_pulser.v
|
||||
|
||||
12
Top/pwm_block/list/pwm_core_tb.sim
Normal file
12
Top/pwm_block/list/pwm_core_tb.sim
Normal file
@ -0,0 +1,12 @@
|
||||
# Simulator xsim
|
||||
|
||||
[generics]
|
||||
VCD_DUMPFILE=pwm_core_tb.vcd
|
||||
|
||||
[properties]
|
||||
ACTIVE=1
|
||||
TOP=pwm_core_tb
|
||||
|
||||
[files]
|
||||
pwm_block/src/pwm_core.v
|
||||
pwm_block/sim/pwm_core_tb.v
|
||||
@ -2,4 +2,5 @@
|
||||
|
||||
[main]
|
||||
PART = xc7z007sclg400-1
|
||||
IP_REPO_PATHS = "IP/ UserIP/"
|
||||
|
||||
|
||||
@ -1,2 +1,2 @@
|
||||
pwm_controller/src/top.v top=top
|
||||
BD/pwm_controller/pwm_controller.bd top=pwm_controller
|
||||
|
||||
|
||||
41
hw_pwm_controller/src/top.v
Normal file
41
hw_pwm_controller/src/top.v
Normal file
@ -0,0 +1,41 @@
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module top (
|
||||
input clk,
|
||||
input [0:0] btn,
|
||||
input [11:0] sw,
|
||||
output [2:0] RGB_led_A,
|
||||
output [7:0] led
|
||||
);
|
||||
|
||||
wire pulse_en;
|
||||
|
||||
clk_enable_pulser enpulser (
|
||||
.clk(clk),
|
||||
.rst(0),
|
||||
.sel(6),
|
||||
.en_out(pulse_en)
|
||||
);
|
||||
|
||||
wire cur_en = btn[0] ? pulse_en : 1;
|
||||
|
||||
wire oen = sw[11];
|
||||
assign led[0] = oen;
|
||||
|
||||
pwm_core #(
|
||||
.WINDOW_REG_SIZE(8)
|
||||
) pwm_core_r (
|
||||
.clk(clk),
|
||||
.en(cur_en),
|
||||
.rst(0),
|
||||
.duty(sw[7:0]),
|
||||
.window_width(255),
|
||||
.oen(oen),
|
||||
.pulse(RGB_led_A[0])
|
||||
);
|
||||
|
||||
assign RGB_led_A[1] = 0;
|
||||
assign RGB_led_A[2] = 0;
|
||||
|
||||
endmodule
|
||||
|
||||
79
led_controller/src/blackboard_led_controller_v1_0.v
Normal file
79
led_controller/src/blackboard_led_controller_v1_0.v
Normal file
@ -0,0 +1,79 @@
|
||||
|
||||
`timescale 1 ns / 1 ps
|
||||
|
||||
module blackboard_led_controller_v1_0 #
|
||||
(
|
||||
// Users to add parameters here
|
||||
|
||||
// User parameters ends
|
||||
// Do not modify the parameters beyond this line
|
||||
|
||||
|
||||
// Parameters of Axi Slave Bus Interface S_AXI
|
||||
parameter integer C_S_AXI_DATA_WIDTH = 32,
|
||||
parameter integer C_S_AXI_ADDR_WIDTH = 4
|
||||
)
|
||||
(
|
||||
// Users to add ports here
|
||||
output wire [7:0] led,
|
||||
// User ports ends
|
||||
// Do not modify the ports beyond this line
|
||||
|
||||
|
||||
// Ports of Axi Slave Bus Interface S_AXI
|
||||
input wire s_axi_aclk,
|
||||
input wire s_axi_aresetn,
|
||||
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] s_axi_awaddr,
|
||||
input wire [2 : 0] s_axi_awprot,
|
||||
input wire s_axi_awvalid,
|
||||
output wire s_axi_awready,
|
||||
input wire [C_S_AXI_DATA_WIDTH-1 : 0] s_axi_wdata,
|
||||
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] s_axi_wstrb,
|
||||
input wire s_axi_wvalid,
|
||||
output wire s_axi_wready,
|
||||
output wire [1 : 0] s_axi_bresp,
|
||||
output wire s_axi_bvalid,
|
||||
input wire s_axi_bready,
|
||||
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] s_axi_araddr,
|
||||
input wire [2 : 0] s_axi_arprot,
|
||||
input wire s_axi_arvalid,
|
||||
output wire s_axi_arready,
|
||||
output wire [C_S_AXI_DATA_WIDTH-1 : 0] s_axi_rdata,
|
||||
output wire [1 : 0] s_axi_rresp,
|
||||
output wire s_axi_rvalid,
|
||||
input wire s_axi_rready
|
||||
);
|
||||
// Instantiation of Axi Bus Interface S_AXI
|
||||
blackboard_led_controller_v1_0_S_AXI # (
|
||||
.C_S_AXI_DATA_WIDTH(C_S_AXI_DATA_WIDTH),
|
||||
.C_S_AXI_ADDR_WIDTH(C_S_AXI_ADDR_WIDTH)
|
||||
) blackboard_led_controller_v1_0_S_AXI_inst (
|
||||
.led(led),
|
||||
.S_AXI_ACLK(s_axi_aclk),
|
||||
.S_AXI_ARESETN(s_axi_aresetn),
|
||||
.S_AXI_AWADDR(s_axi_awaddr),
|
||||
.S_AXI_AWPROT(s_axi_awprot),
|
||||
.S_AXI_AWVALID(s_axi_awvalid),
|
||||
.S_AXI_AWREADY(s_axi_awready),
|
||||
.S_AXI_WDATA(s_axi_wdata),
|
||||
.S_AXI_WSTRB(s_axi_wstrb),
|
||||
.S_AXI_WVALID(s_axi_wvalid),
|
||||
.S_AXI_WREADY(s_axi_wready),
|
||||
.S_AXI_BRESP(s_axi_bresp),
|
||||
.S_AXI_BVALID(s_axi_bvalid),
|
||||
.S_AXI_BREADY(s_axi_bready),
|
||||
.S_AXI_ARADDR(s_axi_araddr),
|
||||
.S_AXI_ARPROT(s_axi_arprot),
|
||||
.S_AXI_ARVALID(s_axi_arvalid),
|
||||
.S_AXI_ARREADY(s_axi_arready),
|
||||
.S_AXI_RDATA(s_axi_rdata),
|
||||
.S_AXI_RRESP(s_axi_rresp),
|
||||
.S_AXI_RVALID(s_axi_rvalid),
|
||||
.S_AXI_RREADY(s_axi_rready)
|
||||
);
|
||||
|
||||
// Add user logic here
|
||||
|
||||
// User logic ends
|
||||
|
||||
endmodule
|
||||
407
led_controller/src/blackboard_led_controller_v1_0_S_AXI.v
Normal file
407
led_controller/src/blackboard_led_controller_v1_0_S_AXI.v
Normal file
@ -0,0 +1,407 @@
|
||||
|
||||
`timescale 1 ns / 1 ps
|
||||
|
||||
module blackboard_led_controller_v1_0_S_AXI #
|
||||
(
|
||||
// Users to add parameters here
|
||||
|
||||
// User parameters ends
|
||||
// Do not modify the parameters beyond this line
|
||||
|
||||
// Width of S_AXI data bus
|
||||
parameter integer C_S_AXI_DATA_WIDTH = 32,
|
||||
// Width of S_AXI address bus
|
||||
parameter integer C_S_AXI_ADDR_WIDTH = 4
|
||||
)
|
||||
(
|
||||
// Users to add ports here
|
||||
output wire [7:0] led,
|
||||
// User ports ends
|
||||
// Do not modify the ports beyond this line
|
||||
|
||||
// Global Clock Signal
|
||||
input wire S_AXI_ACLK,
|
||||
// Global Reset Signal. This Signal is Active LOW
|
||||
input wire S_AXI_ARESETN,
|
||||
// Write address (issued by master, acceped by Slave)
|
||||
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
|
||||
// Write channel Protection type. This signal indicates the
|
||||
// privilege and security level of the transaction, and whether
|
||||
// the transaction is a data access or an instruction access.
|
||||
input wire [2 : 0] S_AXI_AWPROT,
|
||||
// Write address valid. This signal indicates that the master signaling
|
||||
// valid write address and control information.
|
||||
input wire S_AXI_AWVALID,
|
||||
// Write address ready. This signal indicates that the slave is ready
|
||||
// to accept an address and associated control signals.
|
||||
output wire S_AXI_AWREADY,
|
||||
// Write data (issued by master, acceped by Slave)
|
||||
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
|
||||
// Write strobes. This signal indicates which byte lanes hold
|
||||
// valid data. There is one write strobe bit for each eight
|
||||
// bits of the write data bus.
|
||||
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
|
||||
// Write valid. This signal indicates that valid write
|
||||
// data and strobes are available.
|
||||
input wire S_AXI_WVALID,
|
||||
// Write ready. This signal indicates that the slave
|
||||
// can accept the write data.
|
||||
output wire S_AXI_WREADY,
|
||||
// Write response. This signal indicates the status
|
||||
// of the write transaction.
|
||||
output wire [1 : 0] S_AXI_BRESP,
|
||||
// Write response valid. This signal indicates that the channel
|
||||
// is signaling a valid write response.
|
||||
output wire S_AXI_BVALID,
|
||||
// Response ready. This signal indicates that the master
|
||||
// can accept a write response.
|
||||
input wire S_AXI_BREADY,
|
||||
// Read address (issued by master, acceped by Slave)
|
||||
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
|
||||
// Protection type. This signal indicates the privilege
|
||||
// and security level of the transaction, and whether the
|
||||
// transaction is a data access or an instruction access.
|
||||
input wire [2 : 0] S_AXI_ARPROT,
|
||||
// Read address valid. This signal indicates that the channel
|
||||
// is signaling valid read address and control information.
|
||||
input wire S_AXI_ARVALID,
|
||||
// Read address ready. This signal indicates that the slave is
|
||||
// ready to accept an address and associated control signals.
|
||||
output wire S_AXI_ARREADY,
|
||||
// Read data (issued by slave)
|
||||
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
|
||||
// Read response. This signal indicates the status of the
|
||||
// read transfer.
|
||||
output wire [1 : 0] S_AXI_RRESP,
|
||||
// Read valid. This signal indicates that the channel is
|
||||
// signaling the required read data.
|
||||
output wire S_AXI_RVALID,
|
||||
// Read ready. This signal indicates that the master can
|
||||
// accept the read data and response information.
|
||||
input wire S_AXI_RREADY
|
||||
);
|
||||
|
||||
// AXI4LITE signals
|
||||
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
|
||||
reg axi_awready;
|
||||
reg axi_wready;
|
||||
reg [1 : 0] axi_bresp;
|
||||
reg axi_bvalid;
|
||||
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
|
||||
reg axi_arready;
|
||||
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
|
||||
reg [1 : 0] axi_rresp;
|
||||
reg axi_rvalid;
|
||||
|
||||
// Example-specific design signals
|
||||
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
|
||||
// ADDR_LSB is used for addressing 32/64 bit registers/memories
|
||||
// ADDR_LSB = 2 for 32 bits (n downto 2)
|
||||
// ADDR_LSB = 3 for 64 bits (n downto 3)
|
||||
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
|
||||
localparam integer OPT_MEM_ADDR_BITS = 1;
|
||||
//----------------------------------------------
|
||||
//-- Signals for user logic register space example
|
||||
//------------------------------------------------
|
||||
//-- Number of Slave Registers 4
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
|
||||
wire slv_reg_rden;
|
||||
wire slv_reg_wren;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
|
||||
integer byte_index;
|
||||
reg aw_en;
|
||||
|
||||
// I/O Connections assignments
|
||||
|
||||
assign S_AXI_AWREADY = axi_awready;
|
||||
assign S_AXI_WREADY = axi_wready;
|
||||
assign S_AXI_BRESP = axi_bresp;
|
||||
assign S_AXI_BVALID = axi_bvalid;
|
||||
assign S_AXI_ARREADY = axi_arready;
|
||||
assign S_AXI_RDATA = axi_rdata;
|
||||
assign S_AXI_RRESP = axi_rresp;
|
||||
assign S_AXI_RVALID = axi_rvalid;
|
||||
// Implement axi_awready generation
|
||||
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
|
||||
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
|
||||
// de-asserted when reset is low.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_awready <= 1'b0;
|
||||
aw_en <= 1'b1;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
|
||||
begin
|
||||
// slave is ready to accept write address when
|
||||
// there is a valid write address and write data
|
||||
// on the write address and data bus. This design
|
||||
// expects no outstanding transactions.
|
||||
axi_awready <= 1'b1;
|
||||
aw_en <= 1'b0;
|
||||
end
|
||||
else if (S_AXI_BREADY && axi_bvalid)
|
||||
begin
|
||||
aw_en <= 1'b1;
|
||||
axi_awready <= 1'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
axi_awready <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_awaddr latching
|
||||
// This process is used to latch the address when both
|
||||
// S_AXI_AWVALID and S_AXI_WVALID are valid.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_awaddr <= 0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
|
||||
begin
|
||||
// Write Address latching
|
||||
axi_awaddr <= S_AXI_AWADDR;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_wready generation
|
||||
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
|
||||
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
|
||||
// de-asserted when reset is low.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_wready <= 1'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
|
||||
begin
|
||||
// slave is ready to accept write data when
|
||||
// there is a valid write address and write data
|
||||
// on the write address and data bus. This design
|
||||
// expects no outstanding transactions.
|
||||
axi_wready <= 1'b1;
|
||||
end
|
||||
else
|
||||
begin
|
||||
axi_wready <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement memory mapped register select and write logic generation
|
||||
// The write data is accepted and written to memory mapped registers when
|
||||
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
|
||||
// select byte enables of slave registers while writing.
|
||||
// These registers are cleared when reset (active low) is applied.
|
||||
// Slave register write enable is asserted when valid address and data are available
|
||||
// and the slave is ready to accept the write address and write data.
|
||||
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
slv_reg0 <= 0;
|
||||
slv_reg1 <= 0;
|
||||
slv_reg2 <= 0;
|
||||
slv_reg3 <= 0;
|
||||
end
|
||||
else begin
|
||||
if (slv_reg_wren)
|
||||
begin
|
||||
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
||||
2'h0:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 0
|
||||
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
2'h1:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 1
|
||||
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
2'h2:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 2
|
||||
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
2'h3:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 3
|
||||
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
default : begin
|
||||
slv_reg0 <= slv_reg0;
|
||||
slv_reg1 <= slv_reg1;
|
||||
slv_reg2 <= slv_reg2;
|
||||
slv_reg3 <= slv_reg3;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement write response logic generation
|
||||
// The write response and response valid signals are asserted by the slave
|
||||
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
|
||||
// This marks the acceptance of address and indicates the status of
|
||||
// write transaction.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_bvalid <= 0;
|
||||
axi_bresp <= 2'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
|
||||
begin
|
||||
// indicates a valid write response is available
|
||||
axi_bvalid <= 1'b1;
|
||||
axi_bresp <= 2'b0; // 'OKAY' response
|
||||
end // work error responses in future
|
||||
else
|
||||
begin
|
||||
if (S_AXI_BREADY && axi_bvalid)
|
||||
//check if bready is asserted while bvalid is high)
|
||||
//(there is a possibility that bready is always asserted high)
|
||||
begin
|
||||
axi_bvalid <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_arready generation
|
||||
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
|
||||
// S_AXI_ARVALID is asserted. axi_awready is
|
||||
// de-asserted when reset (active low) is asserted.
|
||||
// The read address is also latched when S_AXI_ARVALID is
|
||||
// asserted. axi_araddr is reset to zero on reset assertion.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_arready <= 1'b0;
|
||||
axi_araddr <= 32'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_arready && S_AXI_ARVALID)
|
||||
begin
|
||||
// indicates that the slave has acceped the valid read address
|
||||
axi_arready <= 1'b1;
|
||||
// Read address latching
|
||||
axi_araddr <= S_AXI_ARADDR;
|
||||
end
|
||||
else
|
||||
begin
|
||||
axi_arready <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_arvalid generation
|
||||
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
|
||||
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
|
||||
// data are available on the axi_rdata bus at this instance. The
|
||||
// assertion of axi_rvalid marks the validity of read data on the
|
||||
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
|
||||
// is deasserted on reset (active low). axi_rresp and axi_rdata are
|
||||
// cleared to zero on reset (active low).
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_rvalid <= 0;
|
||||
axi_rresp <= 0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
|
||||
begin
|
||||
// Valid read data is available at the read data bus
|
||||
axi_rvalid <= 1'b1;
|
||||
axi_rresp <= 2'b0; // 'OKAY' response
|
||||
end
|
||||
else if (axi_rvalid && S_AXI_RREADY)
|
||||
begin
|
||||
// Read data is accepted by the master
|
||||
axi_rvalid <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement memory mapped register select and read logic generation
|
||||
// Slave register read enable is asserted when valid address is available
|
||||
// and the slave is ready to accept the read address.
|
||||
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
|
||||
always @(*)
|
||||
begin
|
||||
// Address decoding for reading registers
|
||||
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
||||
2'h0 : reg_data_out <= slv_reg0;
|
||||
2'h1 : reg_data_out <= slv_reg1;
|
||||
2'h2 : reg_data_out <= slv_reg2;
|
||||
2'h3 : reg_data_out <= slv_reg3;
|
||||
default : reg_data_out <= 0;
|
||||
endcase
|
||||
end
|
||||
|
||||
// Output register or memory read data
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_rdata <= 0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
// When there is a valid read address (S_AXI_ARVALID) with
|
||||
// acceptance of read address by the slave (axi_arready),
|
||||
// output the read dada
|
||||
if (slv_reg_rden)
|
||||
begin
|
||||
axi_rdata <= reg_data_out; // register read data
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Add user logic here
|
||||
wire led_en;
|
||||
assign led_en = slv_reg1[0];
|
||||
assign led = led_en ? slv_reg0[7:0] : 0;
|
||||
|
||||
// User logic ends
|
||||
|
||||
endmodule
|
||||
2
pwm_block/con/pwm_block.xdc
Normal file
2
pwm_block/con/pwm_block.xdc
Normal file
@ -0,0 +1,2 @@
|
||||
# No constraints
|
||||
|
||||
58
pwm_block/sim/clk_enable_pulser_tb.v
Normal file
58
pwm_block/sim/clk_enable_pulser_tb.v
Normal file
@ -0,0 +1,58 @@
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module clk_enable_pulser_tb #(
|
||||
VCD_DUMPFILE = ""
|
||||
);
|
||||
|
||||
reg clk = 0;
|
||||
reg rst = 1;
|
||||
reg [3:0] sel;
|
||||
|
||||
wire clk_out;
|
||||
wire en_out;
|
||||
|
||||
clk_enable_pulser cut (
|
||||
.clk(clk),
|
||||
.rst(rst),
|
||||
.sel(sel),
|
||||
.clk_out(clk_out),
|
||||
.en_out(en_out)
|
||||
);
|
||||
|
||||
reg [4:0] test_counter = 0;
|
||||
|
||||
always @ (posedge clk) begin
|
||||
if (en_out) begin
|
||||
test_counter <= test_counter + 1;
|
||||
end
|
||||
end
|
||||
|
||||
integer k;
|
||||
|
||||
initial begin
|
||||
rst = 1;
|
||||
clk = 0;
|
||||
|
||||
#10
|
||||
|
||||
rst = 0;
|
||||
sel = 2;
|
||||
|
||||
for (k=0; k<15; k=k+1) begin
|
||||
#5 clk = 1;
|
||||
#5 clk = 0;
|
||||
end
|
||||
|
||||
sel = 3;
|
||||
|
||||
for (k=0; k<31; k=k+1) begin
|
||||
#5 clk = 1;
|
||||
#5 clk = 0;
|
||||
end
|
||||
|
||||
$dumpvars;
|
||||
$finish;
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
74
pwm_block/sim/pwm_core_tb.v
Normal file
74
pwm_block/sim/pwm_core_tb.v
Normal file
@ -0,0 +1,74 @@
|
||||
`timescale 1ns/1ps
|
||||
|
||||
module pwm_core_tb #(
|
||||
VCD_DUMPFILE = ""
|
||||
);
|
||||
|
||||
reg clk = 0;
|
||||
reg en = 1;
|
||||
reg rst = 1;
|
||||
reg [15:0] duty;
|
||||
reg [15:0] window_width;
|
||||
reg oen = 1;
|
||||
|
||||
wire pulse;
|
||||
|
||||
pwm_core#(
|
||||
.WINDOW_REG_SIZE(16)
|
||||
) cut (
|
||||
.clk(clk),
|
||||
.en(en)
|
||||
.rst(rst),
|
||||
.duty(duty),
|
||||
.window_width(window_width),
|
||||
.oen(oen),
|
||||
.pulse(pulse)
|
||||
);
|
||||
|
||||
integer k;
|
||||
|
||||
initial begin
|
||||
rst = 1;
|
||||
clk = 0;
|
||||
|
||||
#10
|
||||
|
||||
rst = 0;
|
||||
oen = 1;
|
||||
duty = 3;
|
||||
window_width = 7;
|
||||
|
||||
for (k=0; k<13; k=k+1) begin
|
||||
#5 clk = 1;
|
||||
#5 clk = 0;
|
||||
end
|
||||
|
||||
duty = 1;
|
||||
|
||||
for (k=0; k<13; k=k+1) begin
|
||||
#5 clk = 1;
|
||||
#5 clk = 0;
|
||||
end
|
||||
|
||||
duty = 1;
|
||||
window_width = 2;
|
||||
|
||||
for (k=0; k<8; k=k+1) begin
|
||||
#5 clk = 1;
|
||||
#5 clk = 0;
|
||||
end
|
||||
|
||||
oen = 0;
|
||||
|
||||
for (k=0; k<5; k=k+1) begin
|
||||
#5 clk = 1;
|
||||
#5 clk = 0;
|
||||
end
|
||||
|
||||
|
||||
$dumpvars;
|
||||
$finish;
|
||||
end
|
||||
|
||||
endmodule
|
||||
|
||||
19
pwm_block/src/clk_enable_pulser.v
Normal file
19
pwm_block/src/clk_enable_pulser.v
Normal file
@ -0,0 +1,19 @@
|
||||
module clk_enable_pulser (
|
||||
input clk,
|
||||
input rst,
|
||||
input [3:0] sel,
|
||||
output wire en_out
|
||||
);
|
||||
|
||||
reg [15:0] count = 0;
|
||||
|
||||
wire [15:0] trigger_bits = count >> sel;
|
||||
|
||||
always @ (posedge clk) begin
|
||||
if (rst || trigger_bits) count <= 1;
|
||||
else count <= count + 1;
|
||||
end
|
||||
|
||||
assign en_out = count[sel];
|
||||
endmodule
|
||||
|
||||
25
pwm_block/src/conf_div.v
Normal file
25
pwm_block/src/conf_div.v
Normal file
@ -0,0 +1,25 @@
|
||||
//power-of-2 clock divider
|
||||
//output clock frequency can be chosen through the input 'sel'
|
||||
//output clock freqeuncy is clk_in/(2^(sel+1))
|
||||
module conf_div (
|
||||
input clk_in,
|
||||
input rst,
|
||||
input [3:0] sel,
|
||||
output reg clk_out
|
||||
|
||||
);
|
||||
wire cl_sel;
|
||||
reg [15:0] count;
|
||||
|
||||
assign cl_sel = count[sel];
|
||||
|
||||
always @(posedge clk_in)
|
||||
if(rst)
|
||||
count<=0;
|
||||
else
|
||||
count<=count+1;
|
||||
|
||||
always @(posedge clk_in)
|
||||
clk_out <= cl_sel;
|
||||
endmodule
|
||||
|
||||
44
pwm_block/src/pwm_core.v
Normal file
44
pwm_block/src/pwm_core.v
Normal file
@ -0,0 +1,44 @@
|
||||
/*
|
||||
* @brief PWM controller for a single output
|
||||
*
|
||||
* @param WINDOW_REG_SIZE Window and duty register size in bits
|
||||
*
|
||||
* @param [in] clk PWM counter clock
|
||||
* @param [in] en Clock enable
|
||||
* @param [in] rst Asynchronous reset
|
||||
* @param [in] duty Duty cycle high time in number of clock cycles
|
||||
* @param [in] window_width Number of clock cycles in a window
|
||||
* @param [in] oen Output pulse enable
|
||||
* @param [out] pulse Output pulse
|
||||
*/
|
||||
module pwm_core #(
|
||||
WINDOW_REG_SIZE = 16
|
||||
)(
|
||||
input clk,
|
||||
input en,
|
||||
input rst,
|
||||
input [WINDOW_REG_SIZE-1:0] duty,
|
||||
input [WINDOW_REG_SIZE-1:0] window_width,
|
||||
input oen,
|
||||
output pulse
|
||||
);
|
||||
|
||||
reg [WINDOW_REG_SIZE-1:0] duty_counter;
|
||||
|
||||
always @ (posedge(clk), posedge(rst)) begin
|
||||
if (rst) duty_counter <= 0;
|
||||
else if (en) begin
|
||||
if (duty_counter >= window_width - 1)
|
||||
duty_counter <= 0;
|
||||
else
|
||||
duty_counter <= duty_counter + 1;
|
||||
end
|
||||
end
|
||||
|
||||
wire pulse_high;
|
||||
|
||||
assign pulse_high = (duty_counter < duty) ? 1'b1 : 1'b0;
|
||||
assign pulse = oen ? pulse_high : 1'b0;
|
||||
|
||||
endmodule
|
||||
|
||||
79
pwm_block/src/rgb_pwm_block.v
Normal file
79
pwm_block/src/rgb_pwm_block.v
Normal file
@ -0,0 +1,79 @@
|
||||
|
||||
`timescale 1 ns / 1 ps
|
||||
|
||||
module rgb_pwm_block #
|
||||
(
|
||||
// Users to add parameters here
|
||||
|
||||
// User parameters ends
|
||||
// Do not modify the parameters beyond this line
|
||||
|
||||
|
||||
// Parameters of Axi Slave Bus Interface S_AXI
|
||||
parameter integer C_S_AXI_DATA_WIDTH = 32,
|
||||
parameter integer C_S_AXI_ADDR_WIDTH = 4
|
||||
)
|
||||
(
|
||||
// Users to add ports here
|
||||
output wire [2:0] RGB_led,
|
||||
// User ports ends
|
||||
// Do not modify the ports beyond this line
|
||||
|
||||
|
||||
// Ports of Axi Slave Bus Interface S_AXI
|
||||
input wire s_axi_aclk,
|
||||
input wire s_axi_aresetn,
|
||||
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] s_axi_awaddr,
|
||||
input wire [2 : 0] s_axi_awprot,
|
||||
input wire s_axi_awvalid,
|
||||
output wire s_axi_awready,
|
||||
input wire [C_S_AXI_DATA_WIDTH-1 : 0] s_axi_wdata,
|
||||
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] s_axi_wstrb,
|
||||
input wire s_axi_wvalid,
|
||||
output wire s_axi_wready,
|
||||
output wire [1 : 0] s_axi_bresp,
|
||||
output wire s_axi_bvalid,
|
||||
input wire s_axi_bready,
|
||||
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] s_axi_araddr,
|
||||
input wire [2 : 0] s_axi_arprot,
|
||||
input wire s_axi_arvalid,
|
||||
output wire s_axi_arready,
|
||||
output wire [C_S_AXI_DATA_WIDTH-1 : 0] s_axi_rdata,
|
||||
output wire [1 : 0] s_axi_rresp,
|
||||
output wire s_axi_rvalid,
|
||||
input wire s_axi_rready
|
||||
);
|
||||
// Instantiation of Axi Bus Interface S_AXI
|
||||
rgb_pwm_block_S_AXI # (
|
||||
.C_S_AXI_DATA_WIDTH(C_S_AXI_DATA_WIDTH),
|
||||
.C_S_AXI_ADDR_WIDTH(C_S_AXI_ADDR_WIDTH)
|
||||
) rgb_pwm_block_S_AXI_inst (
|
||||
.RGB_led(RGB_led),
|
||||
.S_AXI_ACLK(s_axi_aclk),
|
||||
.S_AXI_ARESETN(s_axi_aresetn),
|
||||
.S_AXI_AWADDR(s_axi_awaddr),
|
||||
.S_AXI_AWPROT(s_axi_awprot),
|
||||
.S_AXI_AWVALID(s_axi_awvalid),
|
||||
.S_AXI_AWREADY(s_axi_awready),
|
||||
.S_AXI_WDATA(s_axi_wdata),
|
||||
.S_AXI_WSTRB(s_axi_wstrb),
|
||||
.S_AXI_WVALID(s_axi_wvalid),
|
||||
.S_AXI_WREADY(s_axi_wready),
|
||||
.S_AXI_BRESP(s_axi_bresp),
|
||||
.S_AXI_BVALID(s_axi_bvalid),
|
||||
.S_AXI_BREADY(s_axi_bready),
|
||||
.S_AXI_ARADDR(s_axi_araddr),
|
||||
.S_AXI_ARPROT(s_axi_arprot),
|
||||
.S_AXI_ARVALID(s_axi_arvalid),
|
||||
.S_AXI_ARREADY(s_axi_arready),
|
||||
.S_AXI_RDATA(s_axi_rdata),
|
||||
.S_AXI_RRESP(s_axi_rresp),
|
||||
.S_AXI_RVALID(s_axi_rvalid),
|
||||
.S_AXI_RREADY(s_axi_rready)
|
||||
);
|
||||
|
||||
// Add user logic here
|
||||
|
||||
// User logic ends
|
||||
|
||||
endmodule
|
||||
456
pwm_block/src/rgb_pwm_block_S_AXI.v
Normal file
456
pwm_block/src/rgb_pwm_block_S_AXI.v
Normal file
@ -0,0 +1,456 @@
|
||||
|
||||
`timescale 1 ns / 1 ps
|
||||
|
||||
module rgb_pwm_block_S_AXI #
|
||||
(
|
||||
// Users to add parameters here
|
||||
|
||||
// User parameters ends
|
||||
// Do not modify the parameters beyond this line
|
||||
|
||||
// Width of S_AXI data bus
|
||||
parameter integer C_S_AXI_DATA_WIDTH = 32,
|
||||
// Width of S_AXI address bus
|
||||
parameter integer C_S_AXI_ADDR_WIDTH = 4
|
||||
)
|
||||
(
|
||||
// Users to add ports here
|
||||
output wire [2:0] RGB_led,
|
||||
|
||||
// User ports ends
|
||||
// Do not modify the ports beyond this line
|
||||
|
||||
// Global Clock Signal
|
||||
input wire S_AXI_ACLK,
|
||||
// Global Reset Signal. This Signal is Active LOW
|
||||
input wire S_AXI_ARESETN,
|
||||
// Write address (issued by master, acceped by Slave)
|
||||
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
|
||||
// Write channel Protection type. This signal indicates the
|
||||
// privilege and security level of the transaction, and whether
|
||||
// the transaction is a data access or an instruction access.
|
||||
input wire [2 : 0] S_AXI_AWPROT,
|
||||
// Write address valid. This signal indicates that the master signaling
|
||||
// valid write address and control information.
|
||||
input wire S_AXI_AWVALID,
|
||||
// Write address ready. This signal indicates that the slave is ready
|
||||
// to accept an address and associated control signals.
|
||||
output wire S_AXI_AWREADY,
|
||||
// Write data (issued by master, acceped by Slave)
|
||||
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
|
||||
// Write strobes. This signal indicates which byte lanes hold
|
||||
// valid data. There is one write strobe bit for each eight
|
||||
// bits of the write data bus.
|
||||
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
|
||||
// Write valid. This signal indicates that valid write
|
||||
// data and strobes are available.
|
||||
input wire S_AXI_WVALID,
|
||||
// Write ready. This signal indicates that the slave
|
||||
// can accept the write data.
|
||||
output wire S_AXI_WREADY,
|
||||
// Write response. This signal indicates the status
|
||||
// of the write transaction.
|
||||
output wire [1 : 0] S_AXI_BRESP,
|
||||
// Write response valid. This signal indicates that the channel
|
||||
// is signaling a valid write response.
|
||||
output wire S_AXI_BVALID,
|
||||
// Response ready. This signal indicates that the master
|
||||
// can accept a write response.
|
||||
input wire S_AXI_BREADY,
|
||||
// Read address (issued by master, acceped by Slave)
|
||||
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
|
||||
// Protection type. This signal indicates the privilege
|
||||
// and security level of the transaction, and whether the
|
||||
// transaction is a data access or an instruction access.
|
||||
input wire [2 : 0] S_AXI_ARPROT,
|
||||
// Read address valid. This signal indicates that the channel
|
||||
// is signaling valid read address and control information.
|
||||
input wire S_AXI_ARVALID,
|
||||
// Read address ready. This signal indicates that the slave is
|
||||
// ready to accept an address and associated control signals.
|
||||
output wire S_AXI_ARREADY,
|
||||
// Read data (issued by slave)
|
||||
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
|
||||
// Read response. This signal indicates the status of the
|
||||
// read transfer.
|
||||
output wire [1 : 0] S_AXI_RRESP,
|
||||
// Read valid. This signal indicates that the channel is
|
||||
// signaling the required read data.
|
||||
output wire S_AXI_RVALID,
|
||||
// Read ready. This signal indicates that the master can
|
||||
// accept the read data and response information.
|
||||
input wire S_AXI_RREADY
|
||||
);
|
||||
|
||||
// AXI4LITE signals
|
||||
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
|
||||
reg axi_awready;
|
||||
reg axi_wready;
|
||||
reg [1 : 0] axi_bresp;
|
||||
reg axi_bvalid;
|
||||
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
|
||||
reg axi_arready;
|
||||
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
|
||||
reg [1 : 0] axi_rresp;
|
||||
reg axi_rvalid;
|
||||
|
||||
// Example-specific design signals
|
||||
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
|
||||
// ADDR_LSB is used for addressing 32/64 bit registers/memories
|
||||
// ADDR_LSB = 2 for 32 bits (n downto 2)
|
||||
// ADDR_LSB = 3 for 64 bits (n downto 3)
|
||||
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
|
||||
localparam integer OPT_MEM_ADDR_BITS = 1;
|
||||
//----------------------------------------------
|
||||
//-- Signals for user logic register space example
|
||||
//------------------------------------------------
|
||||
//-- Number of Slave Registers 4
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
|
||||
wire slv_reg_rden;
|
||||
wire slv_reg_wren;
|
||||
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
|
||||
integer byte_index;
|
||||
reg aw_en;
|
||||
|
||||
// I/O Connections assignments
|
||||
|
||||
assign S_AXI_AWREADY = axi_awready;
|
||||
assign S_AXI_WREADY = axi_wready;
|
||||
assign S_AXI_BRESP = axi_bresp;
|
||||
assign S_AXI_BVALID = axi_bvalid;
|
||||
assign S_AXI_ARREADY = axi_arready;
|
||||
assign S_AXI_RDATA = axi_rdata;
|
||||
assign S_AXI_RRESP = axi_rresp;
|
||||
assign S_AXI_RVALID = axi_rvalid;
|
||||
// Implement axi_awready generation
|
||||
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
|
||||
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
|
||||
// de-asserted when reset is low.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_awready <= 1'b0;
|
||||
aw_en <= 1'b1;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
|
||||
begin
|
||||
// slave is ready to accept write address when
|
||||
// there is a valid write address and write data
|
||||
// on the write address and data bus. This design
|
||||
// expects no outstanding transactions.
|
||||
axi_awready <= 1'b1;
|
||||
aw_en <= 1'b0;
|
||||
end
|
||||
else if (S_AXI_BREADY && axi_bvalid)
|
||||
begin
|
||||
aw_en <= 1'b1;
|
||||
axi_awready <= 1'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
axi_awready <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_awaddr latching
|
||||
// This process is used to latch the address when both
|
||||
// S_AXI_AWVALID and S_AXI_WVALID are valid.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_awaddr <= 0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
|
||||
begin
|
||||
// Write Address latching
|
||||
axi_awaddr <= S_AXI_AWADDR;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_wready generation
|
||||
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
|
||||
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
|
||||
// de-asserted when reset is low.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_wready <= 1'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
|
||||
begin
|
||||
// slave is ready to accept write data when
|
||||
// there is a valid write address and write data
|
||||
// on the write address and data bus. This design
|
||||
// expects no outstanding transactions.
|
||||
axi_wready <= 1'b1;
|
||||
end
|
||||
else
|
||||
begin
|
||||
axi_wready <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement memory mapped register select and write logic generation
|
||||
// The write data is accepted and written to memory mapped registers when
|
||||
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
|
||||
// select byte enables of slave registers while writing.
|
||||
// These registers are cleared when reset (active low) is applied.
|
||||
// Slave register write enable is asserted when valid address and data are available
|
||||
// and the slave is ready to accept the write address and write data.
|
||||
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
slv_reg0 <= 0;
|
||||
slv_reg1 <= 0;
|
||||
slv_reg2 <= 0;
|
||||
slv_reg3 <= 0;
|
||||
end
|
||||
else begin
|
||||
if (slv_reg_wren)
|
||||
begin
|
||||
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
||||
2'h0:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 0
|
||||
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
2'h1:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 1
|
||||
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
2'h2:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 2
|
||||
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
2'h3:
|
||||
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
|
||||
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
|
||||
// Respective byte enables are asserted as per write strobes
|
||||
// Slave register 3
|
||||
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
|
||||
end
|
||||
default : begin
|
||||
slv_reg0 <= slv_reg0;
|
||||
slv_reg1 <= slv_reg1;
|
||||
slv_reg2 <= slv_reg2;
|
||||
slv_reg3 <= slv_reg3;
|
||||
end
|
||||
endcase
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement write response logic generation
|
||||
// The write response and response valid signals are asserted by the slave
|
||||
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
|
||||
// This marks the acceptance of address and indicates the status of
|
||||
// write transaction.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_bvalid <= 0;
|
||||
axi_bresp <= 2'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
|
||||
begin
|
||||
// indicates a valid write response is available
|
||||
axi_bvalid <= 1'b1;
|
||||
axi_bresp <= 2'b0; // 'OKAY' response
|
||||
end // work error responses in future
|
||||
else
|
||||
begin
|
||||
if (S_AXI_BREADY && axi_bvalid)
|
||||
//check if bready is asserted while bvalid is high)
|
||||
//(there is a possibility that bready is always asserted high)
|
||||
begin
|
||||
axi_bvalid <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_arready generation
|
||||
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
|
||||
// S_AXI_ARVALID is asserted. axi_awready is
|
||||
// de-asserted when reset (active low) is asserted.
|
||||
// The read address is also latched when S_AXI_ARVALID is
|
||||
// asserted. axi_araddr is reset to zero on reset assertion.
|
||||
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_arready <= 1'b0;
|
||||
axi_araddr <= 32'b0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (~axi_arready && S_AXI_ARVALID)
|
||||
begin
|
||||
// indicates that the slave has acceped the valid read address
|
||||
axi_arready <= 1'b1;
|
||||
// Read address latching
|
||||
axi_araddr <= S_AXI_ARADDR;
|
||||
end
|
||||
else
|
||||
begin
|
||||
axi_arready <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement axi_arvalid generation
|
||||
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
|
||||
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
|
||||
// data are available on the axi_rdata bus at this instance. The
|
||||
// assertion of axi_rvalid marks the validity of read data on the
|
||||
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
|
||||
// is deasserted on reset (active low). axi_rresp and axi_rdata are
|
||||
// cleared to zero on reset (active low).
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_rvalid <= 0;
|
||||
axi_rresp <= 0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
|
||||
begin
|
||||
// Valid read data is available at the read data bus
|
||||
axi_rvalid <= 1'b1;
|
||||
axi_rresp <= 2'b0; // 'OKAY' response
|
||||
end
|
||||
else if (axi_rvalid && S_AXI_RREADY)
|
||||
begin
|
||||
// Read data is accepted by the master
|
||||
axi_rvalid <= 1'b0;
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Implement memory mapped register select and read logic generation
|
||||
// Slave register read enable is asserted when valid address is available
|
||||
// and the slave is ready to accept the read address.
|
||||
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
|
||||
always @(*)
|
||||
begin
|
||||
// Address decoding for reading registers
|
||||
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
|
||||
2'h0 : reg_data_out <= slv_reg0;
|
||||
2'h1 : reg_data_out <= slv_reg1;
|
||||
2'h2 : reg_data_out <= slv_reg2;
|
||||
2'h3 : reg_data_out <= slv_reg3;
|
||||
default : reg_data_out <= 0;
|
||||
endcase
|
||||
end
|
||||
|
||||
// Output register or memory read data
|
||||
always @( posedge S_AXI_ACLK )
|
||||
begin
|
||||
if ( S_AXI_ARESETN == 1'b0 )
|
||||
begin
|
||||
axi_rdata <= 0;
|
||||
end
|
||||
else
|
||||
begin
|
||||
// When there is a valid read address (S_AXI_ARVALID) with
|
||||
// acceptance of read address by the slave (axi_arready),
|
||||
// output the read dada
|
||||
if (slv_reg_rden)
|
||||
begin
|
||||
axi_rdata <= reg_data_out; // register read data
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
// Add user logic here
|
||||
wire rst = ~S_AXI_ARESETN;
|
||||
|
||||
wire [15:0] duty_R = slv_reg0[15:0];
|
||||
wire [15:0] duty_G = slv_reg1[15:0];
|
||||
wire [15:0] duty_B = slv_reg2[15:0];
|
||||
|
||||
wire [15:0] window_width = slv_reg3[31:16];
|
||||
wire [3:0] pwm_clk_mod = slv_reg3[11:8];
|
||||
wire pwm_oen = slv_reg3[0];
|
||||
|
||||
wire pwm_clk;
|
||||
wire pwm_clk_en;
|
||||
|
||||
assign pwm_clk = S_AXI_ACLK;
|
||||
|
||||
clk_enable_pulser clkdiv_pulser (
|
||||
.clk(pwm_clk),
|
||||
.rst(rst),
|
||||
.sel(pwm_clk_mod),
|
||||
.en_out(pwm_clk_en)
|
||||
);
|
||||
|
||||
pwm_core core_R(
|
||||
.clk(pwm_clk),
|
||||
.en(pwm_clk_en),
|
||||
.rst(rst),
|
||||
.duty(duty_R),
|
||||
.window_width(window_width),
|
||||
.oen(pwm_oen),
|
||||
.pulse(RGB_led[0])
|
||||
);
|
||||
|
||||
pwm_core core_G(
|
||||
.clk(pwm_clk),
|
||||
.en(pwm_clk_en),
|
||||
.rst(rst),
|
||||
.duty(duty_G),
|
||||
.window_width(window_width),
|
||||
.oen(pwm_oen),
|
||||
.pulse(RGB_led[1])
|
||||
);
|
||||
|
||||
pwm_core core_B(
|
||||
.clk(pwm_clk),
|
||||
.en(pwm_clk_en),
|
||||
.rst(rst),
|
||||
.duty(duty_B),
|
||||
.window_width(window_width),
|
||||
.oen(pwm_oen),
|
||||
.pulse(RGB_led[2])
|
||||
);
|
||||
|
||||
// User logic ends
|
||||
|
||||
endmodule
|
||||
9
pwm_block/src/top.v
Normal file
9
pwm_block/src/top.v
Normal file
@ -0,0 +1,9 @@
|
||||
module top(
|
||||
input clk,
|
||||
output [7:0] led
|
||||
);
|
||||
|
||||
assign led = 8'b11111101;
|
||||
|
||||
endmodule
|
||||
|
||||
15
scripts/package_ip.sh
Executable file
15
scripts/package_ip.sh
Executable file
@ -0,0 +1,15 @@
|
||||
#!/usr/bin/bash
|
||||
|
||||
THISSCRIPT=$(realpath $0)
|
||||
PROJECT_ROOT=$(dirname $(dirname $THISSCRIPT))
|
||||
TCLSCRIPT="$PROJECT_ROOT/tcl/package_ip.tcl"
|
||||
|
||||
if [ $# -lt 1 ]; then
|
||||
echo "Usage: $0 PROJECT_NAME"
|
||||
exit -1
|
||||
fi
|
||||
|
||||
PROJNAME=$1
|
||||
|
||||
$VIVADO_ROOT/bin/vivado -mode batch -source "$TCLSCRIPT" -tclargs "$PROJNAME"
|
||||
|
||||
292
tcl/package_ip.tcl
Normal file
292
tcl/package_ip.tcl
Normal file
@ -0,0 +1,292 @@
|
||||
proc DictValueOr { dict key default } {
|
||||
if { [dict exists $dict $key] } {
|
||||
return [dict get $dict $key]
|
||||
} else {
|
||||
return $default
|
||||
}
|
||||
}
|
||||
|
||||
# Returns the value after in the string after startword and a delimiter
|
||||
#
|
||||
# If the string's format does not match, returns empty string
|
||||
#
|
||||
# EX: [SplitSub foo.bar foo] => "bar"
|
||||
# EX: [SplitSub foo.biz foo] => "biz"
|
||||
# EX: [SplitSub foobar foo] => ""
|
||||
# EX: [SplitSub buz.bar foo] => ""
|
||||
proc SplitSub { str startword } {
|
||||
if { [string first $startword $str] == 0 } {
|
||||
set sepidx [string first "." "$str"]
|
||||
|
||||
if { $sepidx == -1 } {
|
||||
return ""
|
||||
}
|
||||
|
||||
set val [string range "$str" [expr $sepidx + 1] [string length "$str"]]
|
||||
|
||||
return $val
|
||||
} else {
|
||||
return ""
|
||||
}
|
||||
}
|
||||
|
||||
# Gets all the values whose key starts with 'startword.*', returns a
|
||||
# dictionary with the same values, but the keys are instead '*'.
|
||||
#
|
||||
# EX: With the dictionary d = { param.foo one param.bar two biz three }
|
||||
#
|
||||
# Calling [GetSubValues $d "param"] would result in the dictionary:
|
||||
#
|
||||
# { foo one bar two }
|
||||
proc GetSubValues {map subcat} {
|
||||
set res_map [dict create]
|
||||
|
||||
foreach {key val} $map {
|
||||
set new_key [SplitSub $key $subcat]
|
||||
|
||||
if { $new_key != "" } {
|
||||
dict append res_map $new_key $val
|
||||
}
|
||||
}
|
||||
|
||||
return $res_map
|
||||
}
|
||||
|
||||
proc InterfaceAddParameters {iface params} {
|
||||
foreach {param_name val} $params {
|
||||
puts "Setting parameter $param_name"
|
||||
|
||||
ipx::add_bus_parameter $param_name $iface
|
||||
set param [ipx::get_bus_parameters $param_name -of_objects $iface]
|
||||
set_property value $val $param
|
||||
}
|
||||
}
|
||||
|
||||
proc InterfaceAddPortMaps {iface port_maps} {
|
||||
foreach {logical_port physical_port} $port_maps {
|
||||
puts "Mapping logical port $logical_port"
|
||||
|
||||
ipx::add_port_map $logical_port $iface
|
||||
set port_map [ipx::get_port_maps $logical_port -of_objects $iface]
|
||||
set_property physical_name $physical_port $port_map
|
||||
}
|
||||
}
|
||||
|
||||
# Parse the interface configuration and create a new interface
|
||||
# in the current core
|
||||
#
|
||||
# @param iface_name Name of the interface to crate
|
||||
# @param iface_conf Dictionary containing the interface configuration, parsed
|
||||
# from hog.tcl ReadConf
|
||||
#
|
||||
proc ParseInterfaceConf { iface_name iface_conf } {
|
||||
puts "Parsing interface $iface_name"
|
||||
|
||||
set iface_abstraction [dict get $iface_conf "INTERFACE"]
|
||||
variable infer false
|
||||
|
||||
if { [dict exists $iface_conf "INFER"] } {
|
||||
set infer [dict get $iface_conf "INFER"]
|
||||
}
|
||||
|
||||
# Creating interface object
|
||||
|
||||
if { $infer } {
|
||||
puts "Inferring interface"
|
||||
|
||||
set ports [split [dict get $iface_conf "PORTS"]]
|
||||
|
||||
puts "Using ports: $ports"
|
||||
|
||||
set result [ipx::infer_bus_interface $ports $iface_abstraction [ipx::current_core]]
|
||||
|
||||
# Inferred name could differ from the desired name, so set it
|
||||
set inferred_name [lindex $result 2]
|
||||
set created_iface [ipx::get_bus_interfaces $inferred_name -of_objects [ipx::current_core]]
|
||||
set_property NAME $iface_name $created_iface
|
||||
} else {
|
||||
puts "Manually creating interface"
|
||||
|
||||
ipx::add_bus_interface $iface_name [ipx::current_core]
|
||||
|
||||
set created_iface [ipx::get_bus_interfaces $iface_name -of_objects [ipx::current_core]]
|
||||
|
||||
set_property ABSTRACTION_TYPE_VLNV $iface_abstraction $created_iface
|
||||
|
||||
# We need to set BOTH the bus ABSTRACTION, and the bus TYPE.
|
||||
# The type can be obtained from the abstraction, so it is what
|
||||
# is provided in ip.conf. Vivado does not provide an easy way
|
||||
# to get one from the other, so we load the interface IP and
|
||||
# get it's property.
|
||||
set bus_abstraction [lindex [ipx::get_ipfiles -type busabs $iface_abstraction] 0]
|
||||
set bus_type_vlnv [get_property BUS_TYPE_VLNV $bus_abstraction]
|
||||
|
||||
set_property BUS_TYPE_VLNV $bus_type_vlnv $created_iface
|
||||
}
|
||||
|
||||
set iface [ipx::get_bus_interfaces $iface_name -of_objects [ipx::current_core]]
|
||||
|
||||
# Set interface properties
|
||||
set_property DESCRIPTION [DictValueOr $iface_conf "DESCRIPTION" ""] $iface
|
||||
set_property DISPLAY_NAME [DictValueOr $iface_conf "DISPLAY_NAME" ""] $iface
|
||||
|
||||
# If no mode is explicitly specified, use the potentially inferred mode
|
||||
if { [dict exists $iface_conf "MODE"] } {
|
||||
set_property INTERFACE_MODE [dict get $iface_conf "MODE"] $iface
|
||||
}
|
||||
|
||||
set params [GetSubValues $iface_conf "PARAMETER"]
|
||||
set port_maps [GetSubValues $iface_conf "PORT"]
|
||||
|
||||
InterfaceAddParameters $iface $params
|
||||
InterfaceAddPortMaps $iface $port_maps
|
||||
}
|
||||
|
||||
proc AddMemoryMapBlock {memmap block_name block_conf} {
|
||||
set disp_name [DictValueOr $block_conf "DISPLAY_NAME" ""]
|
||||
set description [DictValueOr $block_conf "DESCRIPTION" ""]
|
||||
set base_addr [DictValueOr $block_conf "BASE_ADDRESS" "0"]
|
||||
set range [DictValueOr $block_conf "RANGE" "4096"]
|
||||
set width [DictValueOr $block_conf "WIDTH" "0"]
|
||||
|
||||
set block [ipx::add_address_block $block_name $memmap]
|
||||
|
||||
set_property DISPLAY_NAME $disp_name $block
|
||||
set_property DESCRIPTION $description $block
|
||||
set_property BASE_ADDRESS $base_addr $block
|
||||
set_property RANGE $range $block
|
||||
set_property WIDTH $width $block
|
||||
}
|
||||
|
||||
proc ParseMemoryMapConf {iface_name memmap_conf} {
|
||||
set memmap_name "${iface_name}_mem"
|
||||
set blocks [dict get $memmap_conf "BLOCKS"]
|
||||
|
||||
set memmap [ipx::add_memory_map $memmap_name [ipx::current_core]]
|
||||
set associated_iface [ipx::get_bus_interfaces $iface_name -of_objects [ipx::current_core]]
|
||||
set_property SLAVE_MEMORY_MAP_REF $memmap_name $associated_iface
|
||||
|
||||
foreach block_name $blocks {
|
||||
puts "Parsing block $block_name of $memmap_name"
|
||||
|
||||
set block_conf [GetSubValues $memmap_conf $block_name]
|
||||
AddMemoryMapBlock $memmap $block_name $block_conf
|
||||
}
|
||||
}
|
||||
|
||||
set gitroot [exec git rev-parse --show-toplevel]
|
||||
set hogroot "$gitroot/Hog"
|
||||
|
||||
puts "Hog root: $hogroot"
|
||||
|
||||
puts "Sourcing hog.tcl"
|
||||
|
||||
# Using ReadConf
|
||||
source -notrace "$hogroot/Tcl/hog.tcl"
|
||||
|
||||
if { $argc < 1 } {
|
||||
puts "Usage: vivado -mode batch -source package_ip.tcl -tclargs PROJECT_NAME"
|
||||
exit -1
|
||||
}
|
||||
|
||||
set proj_name [lindex $argv 0]
|
||||
set tmp_proj_name "tmp_$proj_name"
|
||||
|
||||
puts "Packaging $proj_name"
|
||||
|
||||
set proj_top_dir "$gitroot/Top/$proj_name"
|
||||
set proj_dir "$gitroot/Projects/$proj_name"
|
||||
set proj_file "$proj_dir/$proj_name.xpr"
|
||||
|
||||
set ip_conf_file "$proj_top_dir/ip.conf"
|
||||
|
||||
puts "Reading configuration file $ip_conf_file"
|
||||
|
||||
set ip_conf [ReadConf "$ip_conf_file"]
|
||||
|
||||
puts "IP Configuration: $ip_conf"
|
||||
|
||||
if { [dict exists $ip_conf main] == 0 } {
|
||||
puts "No main section in IP configuration!"
|
||||
exit -2
|
||||
}
|
||||
|
||||
set ip_root "$gitroot/[dict get $ip_conf main ROOT]"
|
||||
set ip_vendor [dict get $ip_conf main VENDOR]
|
||||
set ip_library [dict get $ip_conf main LIBRARY]
|
||||
set ip_taxonomy [dict get $ip_conf main TAXONOMY]
|
||||
|
||||
puts "Opening project $proj_file"
|
||||
open_project "$proj_file"
|
||||
|
||||
puts "Packaging project"
|
||||
|
||||
ipx::package_project -root_dir "$ip_root" -vendor "$ip_vendor" -library "$ip_library" -taxonomy "$ip_taxonomy" -import_files -set_current false
|
||||
|
||||
set ip_component_file "$ip_root/component.xml"
|
||||
|
||||
puts "Unloading core"
|
||||
|
||||
ipx::unload_core "$ip_component_file"
|
||||
ipx::edit_ip_in_project -name "$tmp_proj_name" -upgrade true -directory "$ip_root" "$ip_component_file"
|
||||
update_compile_order -fileset sources_1
|
||||
|
||||
current_project "$tmp_proj_name"
|
||||
|
||||
# Remove inferred interfaces and memory maps. Start from a blank slate.
|
||||
|
||||
puts "Removing inferred interfaces"
|
||||
|
||||
foreach iface [ipx::get_bus_interfaces -of_objects [ipx::current_core]] {
|
||||
set iface_name [lindex $iface 2]
|
||||
puts "Removing inferred bus interface $iface_name"
|
||||
ipx::remove_bus_interface $iface_name [ipx::current_core]
|
||||
}
|
||||
|
||||
foreach memmap [ipx::get_memory_maps -of_objects [ipx::current_core]] {
|
||||
set memmap_name [lindex $memmap 2]
|
||||
puts "Removing inferred memory map $memmap_name"
|
||||
ipx::remove_memory_map $memmap_name [ipx::current_core]
|
||||
}
|
||||
|
||||
puts "Parsing interfaces"
|
||||
|
||||
foreach {key val} $ip_conf {
|
||||
if { [string first "interface" "$key"] == 0 } {
|
||||
set sepidx [string first "." "$key"]
|
||||
set iface_name [string range "$key" [expr $sepidx + 1] [string length "$key"]]
|
||||
|
||||
ParseInterfaceConf "$iface_name" $val
|
||||
} else {
|
||||
puts "$key is not an interface"
|
||||
}
|
||||
}
|
||||
|
||||
puts "Parsing memory maps"
|
||||
|
||||
set memmaps [GetSubValues $ip_conf "memmap"]
|
||||
|
||||
puts "Memmaps: $memmaps"
|
||||
|
||||
foreach {associated_iface memmap_conf} $memmaps {
|
||||
puts "Parsing memory map for iface $associated_iface, conf: $memmap_conf"
|
||||
ParseMemoryMapConf $associated_iface $memmap_conf
|
||||
}
|
||||
|
||||
puts "Packaging IP"
|
||||
|
||||
# Increment revision
|
||||
set rev [get_property core_revision [ipx::current_core]]
|
||||
incr rev
|
||||
set_property core_revision $rev [ipx::current_core]
|
||||
|
||||
ipx::update_source_project_archive -component [ipx::current_core]
|
||||
ipx::create_xgui_files [ipx::current_core]
|
||||
ipx::update_checksums [ipx::current_core]
|
||||
ipx::check_integrity [ipx::current_core]
|
||||
ipx::save_core [ipx::current_core]
|
||||
|
||||
close_project -delete
|
||||
|
||||
puts "Done"
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user