Compare commits

..

No commits in common. "trunk" and "v0.0.1" have entirely different histories.

32 changed files with 3 additions and 3027 deletions

4
.gitignore vendored
View File

@ -21,8 +21,8 @@
IP/*/* IP/*/*
!IP/*/*.xci* !IP/*/*.xci*
BD/*/* BD/*
!BD/*/*.bd !BD/*.bd
## OS ## OS
.DS_Store .DS_Store

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +0,0 @@
#vivado 2022.1
[main]
PART = xc7z007sclg400-1
IP_REPO_PATHS = "IP/ UserIP/"

View File

@ -1,2 +0,0 @@
pwm_controller/con/blackboard.xdc

View File

@ -1,4 +0,0 @@
hw_pwm_controller/src/top.v top=top
pwm_block/src/pwm_core.v
pwm_block/src/clk_enable_pulser.v

View File

@ -1,5 +0,0 @@
#vivado 2022.1
[main]
PART = xc7z007sclg400-1

View File

@ -1,31 +0,0 @@
[main]
ROOT=UserIP/led_controller
VENDOR=user.org
LIBRARY=user
# What folder the IP shows up under in Vivado IPI
TAXONOMY=/UserIP
[interface.s_axi]
INTERFACE=xilinx.com:interface:aximm_rtl:1.0
INFER=true
PORTS=s_axi_awaddr s_axi_awprot s_axi_awvalid s_axi_awready s_axi_wdata s_axi_wstrb s_axi_wvalid s_axi_wready s_axi_bresp s_axi_bvalid s_axi_bready s_axi_araddr s_axi_arprot s_axi_arvalid s_axi_arready s_axi_rdata s_axi_rresp s_axi_rvalid s_axi_rready
[interface.s_axi_aclk]
INTERFACE=xilinx.com:signal:clock_rtl:1.0
ENABLEMENT_DEPENDENCY
INFER=false
MODE=slave
PORT.CLK=s_axi_aclk
PARAMETER.ASSOCIATED_RESET=s_axi_aresetn
PARAMETER.ASSOCIATED_BUSIF=s_axi
[interface.s_axi_aresetn]
INTERFACE=xilinx.com:signal:reset_rtl:1.0
INFER=true
PORTS=s_axi_aresetn
[memmap.s_axi]
BLOCKS=reg_base
BLOCK.reg_base.BASE_ADDRESS=0
BLOCK.reg_base.RANGE=32

View File

@ -1,3 +0,0 @@
led_controller/src/blackboard_led_controller_v1_0.v
led_controller/src/blackboard_led_controller_v1_0_S_AXI.v

View File

@ -1,5 +0,0 @@
#vivado 2022.1
[main]
PART = xc7z007sclg400-1

View File

@ -1,31 +0,0 @@
[main]
ROOT=UserIP/rgb_pwm_block
VENDOR=user.org
LIBRARY=user
# What folder the IP shows up under in Vivado IPI
TAXONOMY=/UserIP
[interface.s_axi]
INTERFACE=xilinx.com:interface:aximm_rtl:1.0
INFER=true
PORTS=s_axi_awaddr s_axi_awprot s_axi_awvalid s_axi_awready s_axi_wdata s_axi_wstrb s_axi_wvalid s_axi_wready s_axi_bresp s_axi_bvalid s_axi_bready s_axi_araddr s_axi_arprot s_axi_arvalid s_axi_arready s_axi_rdata s_axi_rresp s_axi_rvalid s_axi_rready
[interface.s_axi_aclk]
INTERFACE=xilinx.com:signal:clock_rtl:1.0
ENABLEMENT_DEPENDENCY
INFER=false
MODE=slave
PORT.CLK=s_axi_aclk
PARAMETER.ASSOCIATED_RESET=s_axi_aresetn
PARAMETER.ASSOCIATED_BUSIF=s_axi
[interface.s_axi_aresetn]
INTERFACE=xilinx.com:signal:reset_rtl:1.0
INFER=true
PORTS=s_axi_aresetn
[memmap.s_axi]
BLOCKS=reg_base
BLOCK.reg_base.BASE_ADDRESS=0
BLOCK.reg_base.RANGE=32

View File

@ -1,12 +0,0 @@
# Simulator xsim
[generics]
VCD_DUMPFILE=clk_enable_pulser_tb.vcd
[properties]
ACTIVE=1
TOP=clk_enable_pulser_tb
[files]
pwm_block/src/clk_enable_pulser.v
pwm_block/sim/clk_enable_pulser_tb.v

View File

@ -1,2 +0,0 @@
pwm_block/con/pwm_block.xdc

View File

@ -1 +0,0 @@

View File

@ -1,5 +0,0 @@
pwm_block/src/rgb_pwm_block.v top=rgb_pwm_block
pwm_block/src/rgb_pwm_block_S_AXI.v
pwm_block/src/pwm_core.v
pwm_block/src/clk_enable_pulser.v

View File

@ -1,12 +0,0 @@
# Simulator xsim
[generics]
VCD_DUMPFILE=pwm_core_tb.vcd
[properties]
ACTIVE=1
TOP=pwm_core_tb
[files]
pwm_block/src/pwm_core.v
pwm_block/sim/pwm_core_tb.v

View File

@ -2,5 +2,4 @@
[main] [main]
PART = xc7z007sclg400-1 PART = xc7z007sclg400-1
IP_REPO_PATHS = "IP/ UserIP/"

View File

@ -1,2 +1,2 @@
BD/pwm_controller/pwm_controller.bd top=pwm_controller pwm_controller/src/top.v top=top

View File

@ -1,41 +0,0 @@
`timescale 1ns/1ps
module top (
input clk,
input [0:0] btn,
input [11:0] sw,
output [2:0] RGB_led_A,
output [7:0] led
);
wire pulse_en;
clk_enable_pulser enpulser (
.clk(clk),
.rst(0),
.sel(6),
.en_out(pulse_en)
);
wire cur_en = btn[0] ? pulse_en : 1;
wire oen = sw[11];
assign led[0] = oen;
pwm_core #(
.WINDOW_REG_SIZE(8)
) pwm_core_r (
.clk(clk),
.en(cur_en),
.rst(0),
.duty(sw[7:0]),
.window_width(255),
.oen(oen),
.pulse(RGB_led_A[0])
);
assign RGB_led_A[1] = 0;
assign RGB_led_A[2] = 0;
endmodule

View File

@ -1,79 +0,0 @@
`timescale 1 ns / 1 ps
module blackboard_led_controller_v1_0 #
(
// Users to add parameters here
// User parameters ends
// Do not modify the parameters beyond this line
// Parameters of Axi Slave Bus Interface S_AXI
parameter integer C_S_AXI_DATA_WIDTH = 32,
parameter integer C_S_AXI_ADDR_WIDTH = 4
)
(
// Users to add ports here
output wire [7:0] led,
// User ports ends
// Do not modify the ports beyond this line
// Ports of Axi Slave Bus Interface S_AXI
input wire s_axi_aclk,
input wire s_axi_aresetn,
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] s_axi_awaddr,
input wire [2 : 0] s_axi_awprot,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [C_S_AXI_DATA_WIDTH-1 : 0] s_axi_wdata,
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] s_axi_wstrb,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [1 : 0] s_axi_bresp,
output wire s_axi_bvalid,
input wire s_axi_bready,
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] s_axi_araddr,
input wire [2 : 0] s_axi_arprot,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [C_S_AXI_DATA_WIDTH-1 : 0] s_axi_rdata,
output wire [1 : 0] s_axi_rresp,
output wire s_axi_rvalid,
input wire s_axi_rready
);
// Instantiation of Axi Bus Interface S_AXI
blackboard_led_controller_v1_0_S_AXI # (
.C_S_AXI_DATA_WIDTH(C_S_AXI_DATA_WIDTH),
.C_S_AXI_ADDR_WIDTH(C_S_AXI_ADDR_WIDTH)
) blackboard_led_controller_v1_0_S_AXI_inst (
.led(led),
.S_AXI_ACLK(s_axi_aclk),
.S_AXI_ARESETN(s_axi_aresetn),
.S_AXI_AWADDR(s_axi_awaddr),
.S_AXI_AWPROT(s_axi_awprot),
.S_AXI_AWVALID(s_axi_awvalid),
.S_AXI_AWREADY(s_axi_awready),
.S_AXI_WDATA(s_axi_wdata),
.S_AXI_WSTRB(s_axi_wstrb),
.S_AXI_WVALID(s_axi_wvalid),
.S_AXI_WREADY(s_axi_wready),
.S_AXI_BRESP(s_axi_bresp),
.S_AXI_BVALID(s_axi_bvalid),
.S_AXI_BREADY(s_axi_bready),
.S_AXI_ARADDR(s_axi_araddr),
.S_AXI_ARPROT(s_axi_arprot),
.S_AXI_ARVALID(s_axi_arvalid),
.S_AXI_ARREADY(s_axi_arready),
.S_AXI_RDATA(s_axi_rdata),
.S_AXI_RRESP(s_axi_rresp),
.S_AXI_RVALID(s_axi_rvalid),
.S_AXI_RREADY(s_axi_rready)
);
// Add user logic here
// User logic ends
endmodule

View File

@ -1,407 +0,0 @@
`timescale 1 ns / 1 ps
module blackboard_led_controller_v1_0_S_AXI #
(
// Users to add parameters here
// User parameters ends
// Do not modify the parameters beyond this line
// Width of S_AXI data bus
parameter integer C_S_AXI_DATA_WIDTH = 32,
// Width of S_AXI address bus
parameter integer C_S_AXI_ADDR_WIDTH = 4
)
(
// Users to add ports here
output wire [7:0] led,
// User ports ends
// Do not modify the ports beyond this line
// Global Clock Signal
input wire S_AXI_ACLK,
// Global Reset Signal. This Signal is Active LOW
input wire S_AXI_ARESETN,
// Write address (issued by master, acceped by Slave)
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
// Write channel Protection type. This signal indicates the
// privilege and security level of the transaction, and whether
// the transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_AWPROT,
// Write address valid. This signal indicates that the master signaling
// valid write address and control information.
input wire S_AXI_AWVALID,
// Write address ready. This signal indicates that the slave is ready
// to accept an address and associated control signals.
output wire S_AXI_AWREADY,
// Write data (issued by master, acceped by Slave)
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
// Write strobes. This signal indicates which byte lanes hold
// valid data. There is one write strobe bit for each eight
// bits of the write data bus.
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
// Write valid. This signal indicates that valid write
// data and strobes are available.
input wire S_AXI_WVALID,
// Write ready. This signal indicates that the slave
// can accept the write data.
output wire S_AXI_WREADY,
// Write response. This signal indicates the status
// of the write transaction.
output wire [1 : 0] S_AXI_BRESP,
// Write response valid. This signal indicates that the channel
// is signaling a valid write response.
output wire S_AXI_BVALID,
// Response ready. This signal indicates that the master
// can accept a write response.
input wire S_AXI_BREADY,
// Read address (issued by master, acceped by Slave)
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
// Protection type. This signal indicates the privilege
// and security level of the transaction, and whether the
// transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_ARPROT,
// Read address valid. This signal indicates that the channel
// is signaling valid read address and control information.
input wire S_AXI_ARVALID,
// Read address ready. This signal indicates that the slave is
// ready to accept an address and associated control signals.
output wire S_AXI_ARREADY,
// Read data (issued by slave)
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
// Read response. This signal indicates the status of the
// read transfer.
output wire [1 : 0] S_AXI_RRESP,
// Read valid. This signal indicates that the channel is
// signaling the required read data.
output wire S_AXI_RVALID,
// Read ready. This signal indicates that the master can
// accept the read data and response information.
input wire S_AXI_RREADY
);
// AXI4LITE signals
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
reg axi_awready;
reg axi_wready;
reg [1 : 0] axi_bresp;
reg axi_bvalid;
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
reg axi_arready;
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
reg [1 : 0] axi_rresp;
reg axi_rvalid;
// Example-specific design signals
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
// ADDR_LSB is used for addressing 32/64 bit registers/memories
// ADDR_LSB = 2 for 32 bits (n downto 2)
// ADDR_LSB = 3 for 64 bits (n downto 3)
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
localparam integer OPT_MEM_ADDR_BITS = 1;
//----------------------------------------------
//-- Signals for user logic register space example
//------------------------------------------------
//-- Number of Slave Registers 4
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
wire slv_reg_rden;
wire slv_reg_wren;
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
integer byte_index;
reg aw_en;
// I/O Connections assignments
assign S_AXI_AWREADY = axi_awready;
assign S_AXI_WREADY = axi_wready;
assign S_AXI_BRESP = axi_bresp;
assign S_AXI_BVALID = axi_bvalid;
assign S_AXI_ARREADY = axi_arready;
assign S_AXI_RDATA = axi_rdata;
assign S_AXI_RRESP = axi_rresp;
assign S_AXI_RVALID = axi_rvalid;
// Implement axi_awready generation
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awready <= 1'b0;
aw_en <= 1'b1;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
begin
// slave is ready to accept write address when
// there is a valid write address and write data
// on the write address and data bus. This design
// expects no outstanding transactions.
axi_awready <= 1'b1;
aw_en <= 1'b0;
end
else if (S_AXI_BREADY && axi_bvalid)
begin
aw_en <= 1'b1;
axi_awready <= 1'b0;
end
else
begin
axi_awready <= 1'b0;
end
end
end
// Implement axi_awaddr latching
// This process is used to latch the address when both
// S_AXI_AWVALID and S_AXI_WVALID are valid.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awaddr <= 0;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
begin
// Write Address latching
axi_awaddr <= S_AXI_AWADDR;
end
end
end
// Implement axi_wready generation
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_wready <= 1'b0;
end
else
begin
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
begin
// slave is ready to accept write data when
// there is a valid write address and write data
// on the write address and data bus. This design
// expects no outstanding transactions.
axi_wready <= 1'b1;
end
else
begin
axi_wready <= 1'b0;
end
end
end
// Implement memory mapped register select and write logic generation
// The write data is accepted and written to memory mapped registers when
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
// select byte enables of slave registers while writing.
// These registers are cleared when reset (active low) is applied.
// Slave register write enable is asserted when valid address and data are available
// and the slave is ready to accept the write address and write data.
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
slv_reg0 <= 0;
slv_reg1 <= 0;
slv_reg2 <= 0;
slv_reg3 <= 0;
end
else begin
if (slv_reg_wren)
begin
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
2'h0:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 0
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
2'h1:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 1
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
2'h2:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 2
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
2'h3:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 3
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
default : begin
slv_reg0 <= slv_reg0;
slv_reg1 <= slv_reg1;
slv_reg2 <= slv_reg2;
slv_reg3 <= slv_reg3;
end
endcase
end
end
end
// Implement write response logic generation
// The write response and response valid signals are asserted by the slave
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
// This marks the acceptance of address and indicates the status of
// write transaction.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_bvalid <= 0;
axi_bresp <= 2'b0;
end
else
begin
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
begin
// indicates a valid write response is available
axi_bvalid <= 1'b1;
axi_bresp <= 2'b0; // 'OKAY' response
end // work error responses in future
else
begin
if (S_AXI_BREADY && axi_bvalid)
//check if bready is asserted while bvalid is high)
//(there is a possibility that bready is always asserted high)
begin
axi_bvalid <= 1'b0;
end
end
end
end
// Implement axi_arready generation
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
// S_AXI_ARVALID is asserted. axi_awready is
// de-asserted when reset (active low) is asserted.
// The read address is also latched when S_AXI_ARVALID is
// asserted. axi_araddr is reset to zero on reset assertion.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_arready <= 1'b0;
axi_araddr <= 32'b0;
end
else
begin
if (~axi_arready && S_AXI_ARVALID)
begin
// indicates that the slave has acceped the valid read address
axi_arready <= 1'b1;
// Read address latching
axi_araddr <= S_AXI_ARADDR;
end
else
begin
axi_arready <= 1'b0;
end
end
end
// Implement axi_arvalid generation
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
// data are available on the axi_rdata bus at this instance. The
// assertion of axi_rvalid marks the validity of read data on the
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
// is deasserted on reset (active low). axi_rresp and axi_rdata are
// cleared to zero on reset (active low).
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_rvalid <= 0;
axi_rresp <= 0;
end
else
begin
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
begin
// Valid read data is available at the read data bus
axi_rvalid <= 1'b1;
axi_rresp <= 2'b0; // 'OKAY' response
end
else if (axi_rvalid && S_AXI_RREADY)
begin
// Read data is accepted by the master
axi_rvalid <= 1'b0;
end
end
end
// Implement memory mapped register select and read logic generation
// Slave register read enable is asserted when valid address is available
// and the slave is ready to accept the read address.
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
always @(*)
begin
// Address decoding for reading registers
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
2'h0 : reg_data_out <= slv_reg0;
2'h1 : reg_data_out <= slv_reg1;
2'h2 : reg_data_out <= slv_reg2;
2'h3 : reg_data_out <= slv_reg3;
default : reg_data_out <= 0;
endcase
end
// Output register or memory read data
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_rdata <= 0;
end
else
begin
// When there is a valid read address (S_AXI_ARVALID) with
// acceptance of read address by the slave (axi_arready),
// output the read dada
if (slv_reg_rden)
begin
axi_rdata <= reg_data_out; // register read data
end
end
end
// Add user logic here
wire led_en;
assign led_en = slv_reg1[0];
assign led = led_en ? slv_reg0[7:0] : 0;
// User logic ends
endmodule

View File

@ -1,2 +0,0 @@
# No constraints

View File

@ -1,58 +0,0 @@
`timescale 1ns/1ps
module clk_enable_pulser_tb #(
VCD_DUMPFILE = ""
);
reg clk = 0;
reg rst = 1;
reg [3:0] sel;
wire clk_out;
wire en_out;
clk_enable_pulser cut (
.clk(clk),
.rst(rst),
.sel(sel),
.clk_out(clk_out),
.en_out(en_out)
);
reg [4:0] test_counter = 0;
always @ (posedge clk) begin
if (en_out) begin
test_counter <= test_counter + 1;
end
end
integer k;
initial begin
rst = 1;
clk = 0;
#10
rst = 0;
sel = 2;
for (k=0; k<15; k=k+1) begin
#5 clk = 1;
#5 clk = 0;
end
sel = 3;
for (k=0; k<31; k=k+1) begin
#5 clk = 1;
#5 clk = 0;
end
$dumpvars;
$finish;
end
endmodule

View File

@ -1,74 +0,0 @@
`timescale 1ns/1ps
module pwm_core_tb #(
VCD_DUMPFILE = ""
);
reg clk = 0;
reg en = 1;
reg rst = 1;
reg [15:0] duty;
reg [15:0] window_width;
reg oen = 1;
wire pulse;
pwm_core#(
.WINDOW_REG_SIZE(16)
) cut (
.clk(clk),
.en(en)
.rst(rst),
.duty(duty),
.window_width(window_width),
.oen(oen),
.pulse(pulse)
);
integer k;
initial begin
rst = 1;
clk = 0;
#10
rst = 0;
oen = 1;
duty = 3;
window_width = 7;
for (k=0; k<13; k=k+1) begin
#5 clk = 1;
#5 clk = 0;
end
duty = 1;
for (k=0; k<13; k=k+1) begin
#5 clk = 1;
#5 clk = 0;
end
duty = 1;
window_width = 2;
for (k=0; k<8; k=k+1) begin
#5 clk = 1;
#5 clk = 0;
end
oen = 0;
for (k=0; k<5; k=k+1) begin
#5 clk = 1;
#5 clk = 0;
end
$dumpvars;
$finish;
end
endmodule

View File

@ -1,19 +0,0 @@
module clk_enable_pulser (
input clk,
input rst,
input [3:0] sel,
output wire en_out
);
reg [15:0] count = 0;
wire [15:0] trigger_bits = count >> sel;
always @ (posedge clk) begin
if (rst || trigger_bits) count <= 1;
else count <= count + 1;
end
assign en_out = count[sel];
endmodule

View File

@ -1,25 +0,0 @@
//power-of-2 clock divider
//output clock frequency can be chosen through the input 'sel'
//output clock freqeuncy is clk_in/(2^(sel+1))
module conf_div (
input clk_in,
input rst,
input [3:0] sel,
output reg clk_out
);
wire cl_sel;
reg [15:0] count;
assign cl_sel = count[sel];
always @(posedge clk_in)
if(rst)
count<=0;
else
count<=count+1;
always @(posedge clk_in)
clk_out <= cl_sel;
endmodule

View File

@ -1,44 +0,0 @@
/*
* @brief PWM controller for a single output
*
* @param WINDOW_REG_SIZE Window and duty register size in bits
*
* @param [in] clk PWM counter clock
* @param [in] en Clock enable
* @param [in] rst Asynchronous reset
* @param [in] duty Duty cycle high time in number of clock cycles
* @param [in] window_width Number of clock cycles in a window
* @param [in] oen Output pulse enable
* @param [out] pulse Output pulse
*/
module pwm_core #(
WINDOW_REG_SIZE = 16
)(
input clk,
input en,
input rst,
input [WINDOW_REG_SIZE-1:0] duty,
input [WINDOW_REG_SIZE-1:0] window_width,
input oen,
output pulse
);
reg [WINDOW_REG_SIZE-1:0] duty_counter;
always @ (posedge(clk), posedge(rst)) begin
if (rst) duty_counter <= 0;
else if (en) begin
if (duty_counter >= window_width - 1)
duty_counter <= 0;
else
duty_counter <= duty_counter + 1;
end
end
wire pulse_high;
assign pulse_high = (duty_counter < duty) ? 1'b1 : 1'b0;
assign pulse = oen ? pulse_high : 1'b0;
endmodule

View File

@ -1,79 +0,0 @@
`timescale 1 ns / 1 ps
module rgb_pwm_block #
(
// Users to add parameters here
// User parameters ends
// Do not modify the parameters beyond this line
// Parameters of Axi Slave Bus Interface S_AXI
parameter integer C_S_AXI_DATA_WIDTH = 32,
parameter integer C_S_AXI_ADDR_WIDTH = 4
)
(
// Users to add ports here
output wire [2:0] RGB_led,
// User ports ends
// Do not modify the ports beyond this line
// Ports of Axi Slave Bus Interface S_AXI
input wire s_axi_aclk,
input wire s_axi_aresetn,
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] s_axi_awaddr,
input wire [2 : 0] s_axi_awprot,
input wire s_axi_awvalid,
output wire s_axi_awready,
input wire [C_S_AXI_DATA_WIDTH-1 : 0] s_axi_wdata,
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] s_axi_wstrb,
input wire s_axi_wvalid,
output wire s_axi_wready,
output wire [1 : 0] s_axi_bresp,
output wire s_axi_bvalid,
input wire s_axi_bready,
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] s_axi_araddr,
input wire [2 : 0] s_axi_arprot,
input wire s_axi_arvalid,
output wire s_axi_arready,
output wire [C_S_AXI_DATA_WIDTH-1 : 0] s_axi_rdata,
output wire [1 : 0] s_axi_rresp,
output wire s_axi_rvalid,
input wire s_axi_rready
);
// Instantiation of Axi Bus Interface S_AXI
rgb_pwm_block_S_AXI # (
.C_S_AXI_DATA_WIDTH(C_S_AXI_DATA_WIDTH),
.C_S_AXI_ADDR_WIDTH(C_S_AXI_ADDR_WIDTH)
) rgb_pwm_block_S_AXI_inst (
.RGB_led(RGB_led),
.S_AXI_ACLK(s_axi_aclk),
.S_AXI_ARESETN(s_axi_aresetn),
.S_AXI_AWADDR(s_axi_awaddr),
.S_AXI_AWPROT(s_axi_awprot),
.S_AXI_AWVALID(s_axi_awvalid),
.S_AXI_AWREADY(s_axi_awready),
.S_AXI_WDATA(s_axi_wdata),
.S_AXI_WSTRB(s_axi_wstrb),
.S_AXI_WVALID(s_axi_wvalid),
.S_AXI_WREADY(s_axi_wready),
.S_AXI_BRESP(s_axi_bresp),
.S_AXI_BVALID(s_axi_bvalid),
.S_AXI_BREADY(s_axi_bready),
.S_AXI_ARADDR(s_axi_araddr),
.S_AXI_ARPROT(s_axi_arprot),
.S_AXI_ARVALID(s_axi_arvalid),
.S_AXI_ARREADY(s_axi_arready),
.S_AXI_RDATA(s_axi_rdata),
.S_AXI_RRESP(s_axi_rresp),
.S_AXI_RVALID(s_axi_rvalid),
.S_AXI_RREADY(s_axi_rready)
);
// Add user logic here
// User logic ends
endmodule

View File

@ -1,456 +0,0 @@
`timescale 1 ns / 1 ps
module rgb_pwm_block_S_AXI #
(
// Users to add parameters here
// User parameters ends
// Do not modify the parameters beyond this line
// Width of S_AXI data bus
parameter integer C_S_AXI_DATA_WIDTH = 32,
// Width of S_AXI address bus
parameter integer C_S_AXI_ADDR_WIDTH = 4
)
(
// Users to add ports here
output wire [2:0] RGB_led,
// User ports ends
// Do not modify the ports beyond this line
// Global Clock Signal
input wire S_AXI_ACLK,
// Global Reset Signal. This Signal is Active LOW
input wire S_AXI_ARESETN,
// Write address (issued by master, acceped by Slave)
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_AWADDR,
// Write channel Protection type. This signal indicates the
// privilege and security level of the transaction, and whether
// the transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_AWPROT,
// Write address valid. This signal indicates that the master signaling
// valid write address and control information.
input wire S_AXI_AWVALID,
// Write address ready. This signal indicates that the slave is ready
// to accept an address and associated control signals.
output wire S_AXI_AWREADY,
// Write data (issued by master, acceped by Slave)
input wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_WDATA,
// Write strobes. This signal indicates which byte lanes hold
// valid data. There is one write strobe bit for each eight
// bits of the write data bus.
input wire [(C_S_AXI_DATA_WIDTH/8)-1 : 0] S_AXI_WSTRB,
// Write valid. This signal indicates that valid write
// data and strobes are available.
input wire S_AXI_WVALID,
// Write ready. This signal indicates that the slave
// can accept the write data.
output wire S_AXI_WREADY,
// Write response. This signal indicates the status
// of the write transaction.
output wire [1 : 0] S_AXI_BRESP,
// Write response valid. This signal indicates that the channel
// is signaling a valid write response.
output wire S_AXI_BVALID,
// Response ready. This signal indicates that the master
// can accept a write response.
input wire S_AXI_BREADY,
// Read address (issued by master, acceped by Slave)
input wire [C_S_AXI_ADDR_WIDTH-1 : 0] S_AXI_ARADDR,
// Protection type. This signal indicates the privilege
// and security level of the transaction, and whether the
// transaction is a data access or an instruction access.
input wire [2 : 0] S_AXI_ARPROT,
// Read address valid. This signal indicates that the channel
// is signaling valid read address and control information.
input wire S_AXI_ARVALID,
// Read address ready. This signal indicates that the slave is
// ready to accept an address and associated control signals.
output wire S_AXI_ARREADY,
// Read data (issued by slave)
output wire [C_S_AXI_DATA_WIDTH-1 : 0] S_AXI_RDATA,
// Read response. This signal indicates the status of the
// read transfer.
output wire [1 : 0] S_AXI_RRESP,
// Read valid. This signal indicates that the channel is
// signaling the required read data.
output wire S_AXI_RVALID,
// Read ready. This signal indicates that the master can
// accept the read data and response information.
input wire S_AXI_RREADY
);
// AXI4LITE signals
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_awaddr;
reg axi_awready;
reg axi_wready;
reg [1 : 0] axi_bresp;
reg axi_bvalid;
reg [C_S_AXI_ADDR_WIDTH-1 : 0] axi_araddr;
reg axi_arready;
reg [C_S_AXI_DATA_WIDTH-1 : 0] axi_rdata;
reg [1 : 0] axi_rresp;
reg axi_rvalid;
// Example-specific design signals
// local parameter for addressing 32 bit / 64 bit C_S_AXI_DATA_WIDTH
// ADDR_LSB is used for addressing 32/64 bit registers/memories
// ADDR_LSB = 2 for 32 bits (n downto 2)
// ADDR_LSB = 3 for 64 bits (n downto 3)
localparam integer ADDR_LSB = (C_S_AXI_DATA_WIDTH/32) + 1;
localparam integer OPT_MEM_ADDR_BITS = 1;
//----------------------------------------------
//-- Signals for user logic register space example
//------------------------------------------------
//-- Number of Slave Registers 4
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg0;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg1;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg2;
reg [C_S_AXI_DATA_WIDTH-1:0] slv_reg3;
wire slv_reg_rden;
wire slv_reg_wren;
reg [C_S_AXI_DATA_WIDTH-1:0] reg_data_out;
integer byte_index;
reg aw_en;
// I/O Connections assignments
assign S_AXI_AWREADY = axi_awready;
assign S_AXI_WREADY = axi_wready;
assign S_AXI_BRESP = axi_bresp;
assign S_AXI_BVALID = axi_bvalid;
assign S_AXI_ARREADY = axi_arready;
assign S_AXI_RDATA = axi_rdata;
assign S_AXI_RRESP = axi_rresp;
assign S_AXI_RVALID = axi_rvalid;
// Implement axi_awready generation
// axi_awready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_awready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awready <= 1'b0;
aw_en <= 1'b1;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
begin
// slave is ready to accept write address when
// there is a valid write address and write data
// on the write address and data bus. This design
// expects no outstanding transactions.
axi_awready <= 1'b1;
aw_en <= 1'b0;
end
else if (S_AXI_BREADY && axi_bvalid)
begin
aw_en <= 1'b1;
axi_awready <= 1'b0;
end
else
begin
axi_awready <= 1'b0;
end
end
end
// Implement axi_awaddr latching
// This process is used to latch the address when both
// S_AXI_AWVALID and S_AXI_WVALID are valid.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_awaddr <= 0;
end
else
begin
if (~axi_awready && S_AXI_AWVALID && S_AXI_WVALID && aw_en)
begin
// Write Address latching
axi_awaddr <= S_AXI_AWADDR;
end
end
end
// Implement axi_wready generation
// axi_wready is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_AWVALID and S_AXI_WVALID are asserted. axi_wready is
// de-asserted when reset is low.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_wready <= 1'b0;
end
else
begin
if (~axi_wready && S_AXI_WVALID && S_AXI_AWVALID && aw_en )
begin
// slave is ready to accept write data when
// there is a valid write address and write data
// on the write address and data bus. This design
// expects no outstanding transactions.
axi_wready <= 1'b1;
end
else
begin
axi_wready <= 1'b0;
end
end
end
// Implement memory mapped register select and write logic generation
// The write data is accepted and written to memory mapped registers when
// axi_awready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted. Write strobes are used to
// select byte enables of slave registers while writing.
// These registers are cleared when reset (active low) is applied.
// Slave register write enable is asserted when valid address and data are available
// and the slave is ready to accept the write address and write data.
assign slv_reg_wren = axi_wready && S_AXI_WVALID && axi_awready && S_AXI_AWVALID;
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
slv_reg0 <= 0;
slv_reg1 <= 0;
slv_reg2 <= 0;
slv_reg3 <= 0;
end
else begin
if (slv_reg_wren)
begin
case ( axi_awaddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
2'h0:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 0
slv_reg0[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
2'h1:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 1
slv_reg1[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
2'h2:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 2
slv_reg2[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
2'h3:
for ( byte_index = 0; byte_index <= (C_S_AXI_DATA_WIDTH/8)-1; byte_index = byte_index+1 )
if ( S_AXI_WSTRB[byte_index] == 1 ) begin
// Respective byte enables are asserted as per write strobes
// Slave register 3
slv_reg3[(byte_index*8) +: 8] <= S_AXI_WDATA[(byte_index*8) +: 8];
end
default : begin
slv_reg0 <= slv_reg0;
slv_reg1 <= slv_reg1;
slv_reg2 <= slv_reg2;
slv_reg3 <= slv_reg3;
end
endcase
end
end
end
// Implement write response logic generation
// The write response and response valid signals are asserted by the slave
// when axi_wready, S_AXI_WVALID, axi_wready and S_AXI_WVALID are asserted.
// This marks the acceptance of address and indicates the status of
// write transaction.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_bvalid <= 0;
axi_bresp <= 2'b0;
end
else
begin
if (axi_awready && S_AXI_AWVALID && ~axi_bvalid && axi_wready && S_AXI_WVALID)
begin
// indicates a valid write response is available
axi_bvalid <= 1'b1;
axi_bresp <= 2'b0; // 'OKAY' response
end // work error responses in future
else
begin
if (S_AXI_BREADY && axi_bvalid)
//check if bready is asserted while bvalid is high)
//(there is a possibility that bready is always asserted high)
begin
axi_bvalid <= 1'b0;
end
end
end
end
// Implement axi_arready generation
// axi_arready is asserted for one S_AXI_ACLK clock cycle when
// S_AXI_ARVALID is asserted. axi_awready is
// de-asserted when reset (active low) is asserted.
// The read address is also latched when S_AXI_ARVALID is
// asserted. axi_araddr is reset to zero on reset assertion.
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_arready <= 1'b0;
axi_araddr <= 32'b0;
end
else
begin
if (~axi_arready && S_AXI_ARVALID)
begin
// indicates that the slave has acceped the valid read address
axi_arready <= 1'b1;
// Read address latching
axi_araddr <= S_AXI_ARADDR;
end
else
begin
axi_arready <= 1'b0;
end
end
end
// Implement axi_arvalid generation
// axi_rvalid is asserted for one S_AXI_ACLK clock cycle when both
// S_AXI_ARVALID and axi_arready are asserted. The slave registers
// data are available on the axi_rdata bus at this instance. The
// assertion of axi_rvalid marks the validity of read data on the
// bus and axi_rresp indicates the status of read transaction.axi_rvalid
// is deasserted on reset (active low). axi_rresp and axi_rdata are
// cleared to zero on reset (active low).
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_rvalid <= 0;
axi_rresp <= 0;
end
else
begin
if (axi_arready && S_AXI_ARVALID && ~axi_rvalid)
begin
// Valid read data is available at the read data bus
axi_rvalid <= 1'b1;
axi_rresp <= 2'b0; // 'OKAY' response
end
else if (axi_rvalid && S_AXI_RREADY)
begin
// Read data is accepted by the master
axi_rvalid <= 1'b0;
end
end
end
// Implement memory mapped register select and read logic generation
// Slave register read enable is asserted when valid address is available
// and the slave is ready to accept the read address.
assign slv_reg_rden = axi_arready & S_AXI_ARVALID & ~axi_rvalid;
always @(*)
begin
// Address decoding for reading registers
case ( axi_araddr[ADDR_LSB+OPT_MEM_ADDR_BITS:ADDR_LSB] )
2'h0 : reg_data_out <= slv_reg0;
2'h1 : reg_data_out <= slv_reg1;
2'h2 : reg_data_out <= slv_reg2;
2'h3 : reg_data_out <= slv_reg3;
default : reg_data_out <= 0;
endcase
end
// Output register or memory read data
always @( posedge S_AXI_ACLK )
begin
if ( S_AXI_ARESETN == 1'b0 )
begin
axi_rdata <= 0;
end
else
begin
// When there is a valid read address (S_AXI_ARVALID) with
// acceptance of read address by the slave (axi_arready),
// output the read dada
if (slv_reg_rden)
begin
axi_rdata <= reg_data_out; // register read data
end
end
end
// Add user logic here
wire rst = ~S_AXI_ARESETN;
wire [15:0] duty_R = slv_reg0[15:0];
wire [15:0] duty_G = slv_reg1[15:0];
wire [15:0] duty_B = slv_reg2[15:0];
wire [15:0] window_width = slv_reg3[31:16];
wire [3:0] pwm_clk_mod = slv_reg3[11:8];
wire pwm_oen = slv_reg3[0];
wire pwm_clk;
wire pwm_clk_en;
assign pwm_clk = S_AXI_ACLK;
clk_enable_pulser clkdiv_pulser (
.clk(pwm_clk),
.rst(rst),
.sel(pwm_clk_mod),
.en_out(pwm_clk_en)
);
pwm_core core_R(
.clk(pwm_clk),
.en(pwm_clk_en),
.rst(rst),
.duty(duty_R),
.window_width(window_width),
.oen(pwm_oen),
.pulse(RGB_led[0])
);
pwm_core core_G(
.clk(pwm_clk),
.en(pwm_clk_en),
.rst(rst),
.duty(duty_G),
.window_width(window_width),
.oen(pwm_oen),
.pulse(RGB_led[1])
);
pwm_core core_B(
.clk(pwm_clk),
.en(pwm_clk_en),
.rst(rst),
.duty(duty_B),
.window_width(window_width),
.oen(pwm_oen),
.pulse(RGB_led[2])
);
// User logic ends
endmodule

View File

@ -1,9 +0,0 @@
module top(
input clk,
output [7:0] led
);
assign led = 8'b11111101;
endmodule

View File

@ -1,15 +0,0 @@
#!/usr/bin/bash
THISSCRIPT=$(realpath $0)
PROJECT_ROOT=$(dirname $(dirname $THISSCRIPT))
TCLSCRIPT="$PROJECT_ROOT/tcl/package_ip.tcl"
if [ $# -lt 1 ]; then
echo "Usage: $0 PROJECT_NAME"
exit -1
fi
PROJNAME=$1
$VIVADO_ROOT/bin/vivado -mode batch -source "$TCLSCRIPT" -tclargs "$PROJNAME"

View File

@ -1,292 +0,0 @@
proc DictValueOr { dict key default } {
if { [dict exists $dict $key] } {
return [dict get $dict $key]
} else {
return $default
}
}
# Returns the value after in the string after startword and a delimiter
#
# If the string's format does not match, returns empty string
#
# EX: [SplitSub foo.bar foo] => "bar"
# EX: [SplitSub foo.biz foo] => "biz"
# EX: [SplitSub foobar foo] => ""
# EX: [SplitSub buz.bar foo] => ""
proc SplitSub { str startword } {
if { [string first $startword $str] == 0 } {
set sepidx [string first "." "$str"]
if { $sepidx == -1 } {
return ""
}
set val [string range "$str" [expr $sepidx + 1] [string length "$str"]]
return $val
} else {
return ""
}
}
# Gets all the values whose key starts with 'startword.*', returns a
# dictionary with the same values, but the keys are instead '*'.
#
# EX: With the dictionary d = { param.foo one param.bar two biz three }
#
# Calling [GetSubValues $d "param"] would result in the dictionary:
#
# { foo one bar two }
proc GetSubValues {map subcat} {
set res_map [dict create]
foreach {key val} $map {
set new_key [SplitSub $key $subcat]
if { $new_key != "" } {
dict append res_map $new_key $val
}
}
return $res_map
}
proc InterfaceAddParameters {iface params} {
foreach {param_name val} $params {
puts "Setting parameter $param_name"
ipx::add_bus_parameter $param_name $iface
set param [ipx::get_bus_parameters $param_name -of_objects $iface]
set_property value $val $param
}
}
proc InterfaceAddPortMaps {iface port_maps} {
foreach {logical_port physical_port} $port_maps {
puts "Mapping logical port $logical_port"
ipx::add_port_map $logical_port $iface
set port_map [ipx::get_port_maps $logical_port -of_objects $iface]
set_property physical_name $physical_port $port_map
}
}
# Parse the interface configuration and create a new interface
# in the current core
#
# @param iface_name Name of the interface to crate
# @param iface_conf Dictionary containing the interface configuration, parsed
# from hog.tcl ReadConf
#
proc ParseInterfaceConf { iface_name iface_conf } {
puts "Parsing interface $iface_name"
set iface_abstraction [dict get $iface_conf "INTERFACE"]
variable infer false
if { [dict exists $iface_conf "INFER"] } {
set infer [dict get $iface_conf "INFER"]
}
# Creating interface object
if { $infer } {
puts "Inferring interface"
set ports [split [dict get $iface_conf "PORTS"]]
puts "Using ports: $ports"
set result [ipx::infer_bus_interface $ports $iface_abstraction [ipx::current_core]]
# Inferred name could differ from the desired name, so set it
set inferred_name [lindex $result 2]
set created_iface [ipx::get_bus_interfaces $inferred_name -of_objects [ipx::current_core]]
set_property NAME $iface_name $created_iface
} else {
puts "Manually creating interface"
ipx::add_bus_interface $iface_name [ipx::current_core]
set created_iface [ipx::get_bus_interfaces $iface_name -of_objects [ipx::current_core]]
set_property ABSTRACTION_TYPE_VLNV $iface_abstraction $created_iface
# We need to set BOTH the bus ABSTRACTION, and the bus TYPE.
# The type can be obtained from the abstraction, so it is what
# is provided in ip.conf. Vivado does not provide an easy way
# to get one from the other, so we load the interface IP and
# get it's property.
set bus_abstraction [lindex [ipx::get_ipfiles -type busabs $iface_abstraction] 0]
set bus_type_vlnv [get_property BUS_TYPE_VLNV $bus_abstraction]
set_property BUS_TYPE_VLNV $bus_type_vlnv $created_iface
}
set iface [ipx::get_bus_interfaces $iface_name -of_objects [ipx::current_core]]
# Set interface properties
set_property DESCRIPTION [DictValueOr $iface_conf "DESCRIPTION" ""] $iface
set_property DISPLAY_NAME [DictValueOr $iface_conf "DISPLAY_NAME" ""] $iface
# If no mode is explicitly specified, use the potentially inferred mode
if { [dict exists $iface_conf "MODE"] } {
set_property INTERFACE_MODE [dict get $iface_conf "MODE"] $iface
}
set params [GetSubValues $iface_conf "PARAMETER"]
set port_maps [GetSubValues $iface_conf "PORT"]
InterfaceAddParameters $iface $params
InterfaceAddPortMaps $iface $port_maps
}
proc AddMemoryMapBlock {memmap block_name block_conf} {
set disp_name [DictValueOr $block_conf "DISPLAY_NAME" ""]
set description [DictValueOr $block_conf "DESCRIPTION" ""]
set base_addr [DictValueOr $block_conf "BASE_ADDRESS" "0"]
set range [DictValueOr $block_conf "RANGE" "4096"]
set width [DictValueOr $block_conf "WIDTH" "0"]
set block [ipx::add_address_block $block_name $memmap]
set_property DISPLAY_NAME $disp_name $block
set_property DESCRIPTION $description $block
set_property BASE_ADDRESS $base_addr $block
set_property RANGE $range $block
set_property WIDTH $width $block
}
proc ParseMemoryMapConf {iface_name memmap_conf} {
set memmap_name "${iface_name}_mem"
set blocks [dict get $memmap_conf "BLOCKS"]
set memmap [ipx::add_memory_map $memmap_name [ipx::current_core]]
set associated_iface [ipx::get_bus_interfaces $iface_name -of_objects [ipx::current_core]]
set_property SLAVE_MEMORY_MAP_REF $memmap_name $associated_iface
foreach block_name $blocks {
puts "Parsing block $block_name of $memmap_name"
set block_conf [GetSubValues $memmap_conf $block_name]
AddMemoryMapBlock $memmap $block_name $block_conf
}
}
set gitroot [exec git rev-parse --show-toplevel]
set hogroot "$gitroot/Hog"
puts "Hog root: $hogroot"
puts "Sourcing hog.tcl"
# Using ReadConf
source -notrace "$hogroot/Tcl/hog.tcl"
if { $argc < 1 } {
puts "Usage: vivado -mode batch -source package_ip.tcl -tclargs PROJECT_NAME"
exit -1
}
set proj_name [lindex $argv 0]
set tmp_proj_name "tmp_$proj_name"
puts "Packaging $proj_name"
set proj_top_dir "$gitroot/Top/$proj_name"
set proj_dir "$gitroot/Projects/$proj_name"
set proj_file "$proj_dir/$proj_name.xpr"
set ip_conf_file "$proj_top_dir/ip.conf"
puts "Reading configuration file $ip_conf_file"
set ip_conf [ReadConf "$ip_conf_file"]
puts "IP Configuration: $ip_conf"
if { [dict exists $ip_conf main] == 0 } {
puts "No main section in IP configuration!"
exit -2
}
set ip_root "$gitroot/[dict get $ip_conf main ROOT]"
set ip_vendor [dict get $ip_conf main VENDOR]
set ip_library [dict get $ip_conf main LIBRARY]
set ip_taxonomy [dict get $ip_conf main TAXONOMY]
puts "Opening project $proj_file"
open_project "$proj_file"
puts "Packaging project"
ipx::package_project -root_dir "$ip_root" -vendor "$ip_vendor" -library "$ip_library" -taxonomy "$ip_taxonomy" -import_files -set_current false
set ip_component_file "$ip_root/component.xml"
puts "Unloading core"
ipx::unload_core "$ip_component_file"
ipx::edit_ip_in_project -name "$tmp_proj_name" -upgrade true -directory "$ip_root" "$ip_component_file"
update_compile_order -fileset sources_1
current_project "$tmp_proj_name"
# Remove inferred interfaces and memory maps. Start from a blank slate.
puts "Removing inferred interfaces"
foreach iface [ipx::get_bus_interfaces -of_objects [ipx::current_core]] {
set iface_name [lindex $iface 2]
puts "Removing inferred bus interface $iface_name"
ipx::remove_bus_interface $iface_name [ipx::current_core]
}
foreach memmap [ipx::get_memory_maps -of_objects [ipx::current_core]] {
set memmap_name [lindex $memmap 2]
puts "Removing inferred memory map $memmap_name"
ipx::remove_memory_map $memmap_name [ipx::current_core]
}
puts "Parsing interfaces"
foreach {key val} $ip_conf {
if { [string first "interface" "$key"] == 0 } {
set sepidx [string first "." "$key"]
set iface_name [string range "$key" [expr $sepidx + 1] [string length "$key"]]
ParseInterfaceConf "$iface_name" $val
} else {
puts "$key is not an interface"
}
}
puts "Parsing memory maps"
set memmaps [GetSubValues $ip_conf "memmap"]
puts "Memmaps: $memmaps"
foreach {associated_iface memmap_conf} $memmaps {
puts "Parsing memory map for iface $associated_iface, conf: $memmap_conf"
ParseMemoryMapConf $associated_iface $memmap_conf
}
puts "Packaging IP"
# Increment revision
set rev [get_property core_revision [ipx::current_core]]
incr rev
set_property core_revision $rev [ipx::current_core]
ipx::update_source_project_archive -component [ipx::current_core]
ipx::create_xgui_files [ipx::current_core]
ipx::update_checksums [ipx::current_core]
ipx::check_integrity [ipx::current_core]
ipx::save_core [ipx::current_core]
close_project -delete
puts "Done"